Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This article analyzes the issue of developing ecologically safe technologies for obtaining the electrochemically activated water solutions for ensuring the rational use of water resources and reducing the volume of discharges of harmful substances into the environment. The necessity of controlling the depth of electrochemical activation for obtaining ecologically safe industrial water solutions and reducing the energy consumption of this process was substantiated. The ecological advantages of electrochemically activated solutions application were presented as compared to the chemical solutions in the technologies of activated carbon surfaces modification to increase the supercapacitors electrode specific capacitance, preparation of the gypsum plaster mixing water to improve the physicochemical properties of gypsum stone, as well as efficiency of use of disinfectant based on the electrochemically activated water solutions solutions, approbated in the sugar production industry. It was experimentally confirmed that the depth of electrochemical activation significantly affects the efficiency of practical use of activated water solutions. The proposed theoretical models allow prediction of the activation modes for solving specific problems.
Czasopismo
Rocznik
Tom
Strony
222--231
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
autor
- Department of electrotechnical systems, Lviv National Agrarian University, 1, V. Velykogo Str., 80381 Dubliany, Lviv region, Ukraine
autor
- Lviv Polytechnic National University, 12, Lviv, 79013, Ukraine Lviv, Ukraine
- Czestochowa University of Technology, Generała Jana Henryka Dąbrowskiego 69, 42-201 Częstochowa, Poland
autor
- Department of ecological safety and nature protection activity, V. Chornovil Institute of sustainable development, Lviv Polytechnic National university, St. Bandery Str., 12, Lviv, 79013 Ukraine
autor
- The Faculty of Civil and Environmental Engineering and Architecture, Rzeszow University of Technology, Powstancow Warszawy 12, 35-084 Rzeszow, Poland
autor
- The Faculty of Civil and Environmental Engineering and Architecture, Rzeszow University of Technology, Powstancow Warszawy 12, 35-084 Rzeszow, Poland
autor
- Lviv Polytechnic National University, 12, Lviv, 79013, Ukraine Lviv, Ukraine
Bibliografia
- 1. Bahir, V.M. 2012. Electrochemical activation: the key to environmentally friendly water treatment technologies. Water supply and sewerage, 1–2, 89–101.
- 2. Bahir, V.M., Zadorozhniy, Yu. G., Leonov, B. I. 2005. Electrochemical activation: a universal tool for green chemistry. VNIIMT.
- 3. Bordun, I.M., Ptashnyk, V.V. 2013. Current inspection as a method of water solutions electrochemical activation depth testing. Energy technologies and resource saving, 5, 46–50.
- 4. Bordun, I.M., Ptashnyk, V.V., Chapovska, R.B. 2013. The use of electrochemically activated solutions in the sugar production. Proceedings of the International Sci.-Tech. conf. “The latest scientific and technical solutions in the sugar industry, 116–120.
- 5. Bordun, I.M., Ptashnyk, V.V., Chapovska, R.B., Baryga, A. 2014. Electrochemically activated solutions as eco-friendly disinfectants of sugar production. Ukrainian Sugar, 99(3), 12–15 (in Ukr.).
- 6. Bordun, I.M., Ptashnyk, V.V., Novosad, P.V. 2013. Effect of electrochemical activation of mixing water on the properties of gypsum. Eastern-European Journal of Enterprise Technologies, 66(6), 32–35. (in Ukr.)
- 7. Bryanskiy, B.Ya., Muhin, V.A., Petrov, A.G., Plakatina, O.S. 2011. Potentiometric determination of the state of electrochemically activated water by means of a freshly renewed graphite electrode. Vestnik Omsk University, 2, 125–129.
- 8. Bugaenko, I.F., Tuzhilkin, V.I. 2007. General technology of the industry. Scientific fundamentals of sugar technology. GIORD.
- 9. Goncharuk, V.V., Chebotareva, R.D., Bagriy, V.A., Bashtan, S.Yu., Remez, S.V. 2005. Water softening in an electrolyzer with a ceramic membrane. Journal of Water Chemistry and Technology, 27(5), 460–470.
- 10. Goncharuk, V.V., Malyarenko, V.V. 2001. Change in water properties under the influence of electrochemical treatment. Journal of Water Chemistry and Technology, 23(4), 345–353).
- 11. Hsu, S.Y. 2003. Effects of water flow rate, salt concentration and water temperature on efficiency of an electrolyzed oxidizing water generator. Journal of Food Engineering, 60(4), 469–473.
- 12. Hsu, S.Y. 2005. Effects of flow rate, temperature and salt concentration on chemical and physical properties of electrolyzed oxidizing water. 2005. Journal of Food Engineering. 66(2), 171–176.
- 13. Huang, Yu. Ru., Hung, Yen.-Con., Hsu, Shun-Yao, Huang, Yao-Wen, Hwang, Deng-Fwu 2008. Application of electrolyzed water in the food industry. Food Control, 19(4), 329–345.
- 14. Ichihara, T., Fujii, G., Eda, T., Sasaki, M., Ueda, Y. 2004 The efficacy of function water (electrolyzed strong acid solution) on open heart surgery; postoperative mediastinitis due to methicillin-resistant Staphylococcus aureus. Kyobu geka. Jpn J Thorac Surg. Nov; 57(12): 1110–2.
- 15. Janich, K., Bordun, I., Ptashnyk, V., Pohrebennyk, V. 2014. Role of Ionic Transport in the Electrochemical Activation of Water Solutions. Przegląd Elektrotechniczny, 90(1), 80–83.
- 16. Kaleta, J., Kida, M., Koszelnik, P., Papciak, D., Puszkarewicz, A., Tchórzewska-Cieślak, B. 2017. The use of activated carbons for removing organic matter from groundwater. Archives of Environmental Protection, 43(3), 32–41.
- 17. Karpinski, M., Pohrebennyk, V., Bernatska, N., Ganczarczyk, J., Shevchenko, O. 2018. Simulation of artificial neural networks for assessing the ecological state of surface water. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, 18 (2.1), 2018, pp. 693–700.
- 18. Kim, C., Hung, Y.C., Brackett, R.E. 2000. Efficacy of electrolyzed oxidizing and chemically modified water on different types of foodborne pathogens. International Journal of Food Microbiology, 61(2–3), 199–207.
- 19. Koszelnik, P., Ziembowicz, S., Kida, M. 2020. Analysis of concentrations of selected phthalic acid esters in aquatic ecosystems–Poland’s case study. Desalination and Water Treatment, 186, 56–64
- 20. Kulskiy, L. A., Strokach, P. P. 1986 Technology of natural water purification. Vy`shha shkola (in Ukr.).
- 21. Kurtov, V.D., KosInov, B.V., Apuhovskiy, A.Y. 2005. Device for electroactivation of liquids. patent UA9995.
- 22. Michel, M. M., Reczek, L., Papciak, D., WłodarczykMakuła, M., Siwiec, T., Trach, Y. (2020). Mineral Materials Coated with and Consisting of MnOxCharacteristics and Application of Filter Media for Groundwater Treatment: A Review. Materials, 13, 22320.
- 23. Miroshnikov, A. I. 2004. Investigation of the causes of the biological effect of electrochemically activated solutions on the growth of Escherichia Coli cells. Biophysics, 49(5), 866–871.
- 24. Mitryasova, O., Pohrebennyk, V., Cygnar, M., Sopilnyak, I. 2016. Environmental natural water quality assessment by method of correlation analysis International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, 2, pp. 317–324.
- 25. Miyashita, K., Nagano, K., Nakamura, T. 2012. Electrolyzed functional water, and production process and production apparatus thereof. patent USA 5997717.
- 26. Morita, C., Sano, K., Morimatsu, S., Kiura, H., Goto, H., Kohno, T. 2000. Disinfection potential of electrolyzed solutions containing sodium chloride at low concentrations. Journal of Virological Methods, 85(2), 163–174.
- 27. Nakamura, S., Fukuzuka, K., Nagayoshi, K., Miyashita, M. 2003. Electrolyzer. patent USA 6527922.
- 28. Plutaxi`n, G. A., Ay`der, M., Koshhaev, A. G., Gnatko, E. N. 2013. Practical application of electrochemically activated water solutions. 92(8), 1–31.
- 29. Patent RU 2007127132. Shironosov, V. G. 2007. Method for determining the activity of a structured liquid.
- 30. Apuxovskyj, A.J., Kurtov, V.D., Kosinov, B.V. 2002. Patent UA49551. Method of drinking medical water receiving.
- 31. Pohrebennyk, V., Petryk, A. 2017. The degree of pollution with heavy metals of fallow soils in rural administrative units of Psary and Płoki in Poland. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, 17 (52), 967–974.
- 32. Prilutskiy, V.I., Dolgopolov, V.I., Barabash, T.B. 2013. Anolytes in the disinfectant market: do not make the wrong choice. Epidemiology and Hygiene, 3, 52–61.
- 33. Shabalin, V.N., Shatohina, S.N. 2001. Morphology of human biological fluids. Hrizostom.
- 34. Styskal, O., Ishchenko, V., Petruk, R., Pohrebennyk, V., Kochanek, A. 2016. Assessment of chlorinated water impact on phytoplankton. 16th International Multidisciplinary Scientific Geoconference, SGEM2016, Vienna, AUSTRIA, 373–380.
- 35. Thorn, R.M., Lee, S.W., Robinson, G.M., Greenman, J., Reynolds, D.M. 2012. Electrochemically activated solutions: evidence for antimicrobial efficacy and applications in healthcare environments. Eur. J. Clin. Microbiol. Infect. Dis. 2012 May 1; 31(5), 641–53.
- 36. Wang, H., Duan, D., Wu, Z., Xue, S., Xu, X., Zhou, G. 2019. Primary concerns regarding the application of electrolyzed water in the meat industry. J. Food Saf. Jan 1, 95, 50–6.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-efe65bdb-af36-4978-b239-250d03f87bc0