PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Novel Method for Optimizing Parameters influencing the Bearing Capacity of Geosynthetic Reinforced Sand Using RSM, ANN, and Multiobjective Genetic Algorithm

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, a novel method is proposed to optimize the reinforced parameters influencing the bearing capacity of a shallow square foundation resting on sandy soil reinforced with geosynthetic. The parameters to be optimized are reinforcement length (L), the number of reinforcement layers (N), the depth of the topmost layer of geosynthetic (U), and the vertical distance between two reinforcement layers (X). To achieve this objective, 25 laboratory small-scale model tests were conducted on reinforced sand. This laboratory-scale model has used two geosynthetics as reinforcement materials and one sandy soil. Firstly, the effect of reinforcement parameters on the bearing load was investigated using the analysis of variance (ANOVA). Both response surface methodology (RSM) and artificial neural networks (ANN) tools were applied and compared to model bearing capacity. Finally, the multiobjective genetic algorithm (MOGA) coupled with RSM and ANN models was used to solve multi objective optimization problems. The design of bearing capacity is considered a multi-objective optimization problem. In this regard, the two conflicting objectives are the need to maximize bearing capacity and minimize the cost. According to the obtained results, an informed decision regarding the design of the bearing capacity of reinforced sand is reached.
Wydawca
Rocznik
Strony
174--196
Opis fizyczny
Bibliogr. 84 poz., rys., tab.
Twórcy
  • Laboratory of Civil Engineering and Hydraulics, University 8 Mai 1945 Guelma, Guelma, Algeria
  • Laboratory of Civil Engineering and Hydraulics, University 8 Mai 1945 Guelma, Guelma, Algeria
  • Laboratory of Civil Engineering and Hydraulics, University 8 Mai 1945 Guelma, Guelma, Algeria
Bibliografia
  • [1] P. K. Kolay, S. Kumar, and D. Tiwari(2013).Improvement of Bearing Capacity of Shallow Foundation on Geogrid Reinforced Silty Clay and Sand.Journal of Construction Engineering Volume 2013, Article ID 293809, 10 pages.http://dx.doi. org/10.1155/2013/293809.
  • [2] Abu El-Soud, S., Belal, A.M (2018).Bearing capacity of rigid shallow footing on geogrid-reinforced fine sand—experimental modeling.Arab J Geosci11, 247 (2018). https://doi.org/10.1007/ s12517-018-3597-0.
  • [3] J. Binquet and K. L. Lee, (1975).”Bearing capacity tests on reinforced earth slabs,”Journal of Geotechnical Engineering Division, vol. 101, no. 12, pp. 1241–1255, 1975.
  • [4] J. Binquet and K. L. Lee, (1975).“Bearing capacity analysis of reinforced earth slabs,”Journal of Geotechnical Engineering Division, vol. 101, no. 12, pp. 1257–1276, 1975.
  • [5] V. A. Guido, D. K. Chang, and M. A. Sweeney, (1986). “Comparison of geogrid and geotextile reinforced earth slabs,”Canadian Geotechnical Journal, vol. 23, no. 4, pp. 435–440, 1986.
  • [6] J. P. Sakti and B. M. Das, (1987). “Model tests for strip foundation on clay reinforced with geotextile layers,”Transportation Research Record, no. 1153, pp. 40–45, 1987.
  • [7] P. K. Basudhar, S. Saha, and K. Deb, (2007).“Circular footings resting on geotextile-reinforced sand bed,”Geotextiles and Geomembranes, vol. 25, no. 6, pp. 377–384, 2007.
  • [8] G. W. E. Milligan, R. J. Fannin, and D. M. Farrar, (1986). “Model and full-scale tests on granular layers reinforced with a geogrid,” in Proceedings of the 3rd International Conference on Geotextiles, vol. 1, pp. 61–66, Vienna, Austria, 1986.
  • [9] K. H. Khing, B. M. Das, V. K. Puri, S. C. Yen, and E. E. Cook, (1994).“Foundation on strong sand underlain by weak clay withgeogrid at the interface,”Geotextiles and Geomembranes, vol. 13, no. 3, pp. 199–206, 1994.
  • [10] B. M. Das, K. H. Khing, and E. C. Shin, (1998).“Stabilization of weak clay with strong sand and geogrid at sand-clay interface,”Transportation Research Record, no. 1611, pp. 55–62, 1998.
  • [11] E. C. Shin, B. M. Das, V. K. Puri, S. C. Yen, and E. E. Cook, (1993). “Bearing capacity of strip foundation on geogrid-reinforced clay,”Geotechnical Testing Journal, vol. 17, no. 4, pp. 535–541, 1993.
  • [12 ]C. R. Patra, B. M. Das, and C. Atalar, 2005).“Bearing capacity of embedded strip foundation on geogrid-reinforced sand,” Geotextiles and Geomembranes, vol. 23, no. 5, pp. 454–462, 2005.
  • [13] B. R. Phanikumar, R. Prasad, and A. Singh, 2009).“Compressive load response of geogrid-reinforced fine, medium and coarse sands,”Geotextiles and Geomembranes, vol. 27, no. 3, pp. 183–186, 2009.
  • [14] Y. L. Dong, J. Han, and X.-H.Bai, (2010).”Bearing capacities of geogridreinforced sand bases under static loading,” in Proceedings of GeoShanghai International Conference: Ground Improvement and Geosynthetics, pp. 275–281, June 2010.
  • [15 ]R. J. Fragaszy and E. Lawton, (1984).”Bearing capacity of reinforced sand subgrades,”Journal of Geotechnical Engineering, vol. 110, no. 10, pp. 1500–1507, 1984.
  • [16] C.-C. Huang and F. Tatsuoka, (1990).”Bearing capacity of reinforced horizontal sandy ground,”Geotextiles and Geomembranes, vol. 9, no. 1, pp. 51–82, 1990.
  • [17] J. O. Akinmusuru and J. A. Akinbolade, (1981).”Stability of loaded footings on reinforced soil,”Journal of the Geotechnical Engineering Division, vol. 107, no. 6, pp. 819–827, 1981.
  • [18] T. Yetimoglu, M. Inanir, and O. E. Inanir, (2005).“A study on bearing capacity of randomly distributed fiber-reinforced sand fills overlying soft clay,”Geotextiles and Geomembranes, vol. 23, no. 2, pp. 174–183, 2005.
  • [19] S. K. Dash, N. R. Krishnaswamy, and K. Rajagopal, (2001).”Bearing capacity of strip footings supported on geocell-reinforced sand,”Geotextiles and Geomembranes, vol. 19, no. 4, pp. 235–256, 2001.
  • [20] S. K. Dash, S. Sireesh, and T. G. Sitharam, (2003).”Behaviour of geocell-reinforced sand beds under circular footing,”Ground Improvement, vol. 7, no. 3, pp. 111–115, 2003.
  • [21] Raja, M.N.A., Shukla, S.K., 2020b. Ultimate bearing capacity of strip footing resting on soil bed strengthened by wraparound geosynthetic reinforcement technique. Geotext. Geomembranes 48 (6), 867e874, https://doi.org/10.1016/j.geotexmem.2020.06.005.
  • [22] Raja MNA, Shukla SK, Experimental study on repeatedly loaded foundation soil strengthened by wraparound geosynthetic reinforcement technique, Journal of Rock Mechanics and Geotechnical Engineering, https://doi.org/10.1016/j. jrmge.2021.02.001
  • [23] Fragaszy RJ, Lawton E (1984).Bearing capacity of reinforced sand subgrades. J GeotechEng 110(10):1500–1507.
  • [24] Yetimoglu T, Wu JT, Saglamer A (1994).Bearing capacity of rectangular footings on geogrid–reinforced sand. J GeotechEng120(12):2083–2099.
  • [25] Akinmusuru JO, Akinbolade JA (1981).Stability of loadedfootings on reinforced soil. J GeotechGeoenvironmental Eng107(ASCE 16320 Proceeding).
  • [26] R.H. Myers, D.C. Montgomery, C.M. Anderson Cook, (2016). Response surface methodology: process and product optimization using designed experiments, Wiley, New York. (2016).
  • [27] Sasmal, S. K., and R. N. Behera.(2018). “Prediction of Combined Static and Cyclic Load Induced Settlement of Shallow Strip Footing on Granular Soil Using Artificial Neural Network.” International Journal of Geotechnical Engineering 1–11. doi:10.1 080/19386362.2018.1557384.
  • [28] Hamrouni A., Sbartai B., Dias D. (2021).”Ultimate dynamic bearing capacity of shallow strip foundations - Reliability analysis using the response surface methodology”.Soil Dynamics and Earthquake Engineering 144; 106690.
  • [29] Hamrouni A, Dias D, Sbartai B. (2020). Soil spatial variability impact on the behaviour of a reinforced earth wall. Front StructCivEng 2020:v15.
  • [30] Marandi, S.M., Anvar, M., and Bahrami, M., (2016). Uncertainty analysis of safety factor of embankment built on stone column improved soft soil using fuzzy logic α-cut technique. Computers and Geotechnics, 75, 135–144. doi:10.1016/j. compgeo.2016.01.014.
  • [31] Lafifi B, Rouaiguia A, Boumazza N (2019).Optimization of geotechnicalparameters using Taguchi’s design of experiment (DOE), RSM anddesirability function.InnovInfrastructSolut 4(1):1–12.
  • [32] ChanaPhutthananon, PornkasemJongpradist&Pitthay aJamsawang (2019): Influence of cap size and strength on settlements of TDM-piled embankments over soft ground,Marine Georesources & Geotechnology, DOI: 10.1080/1064119X.2019.1613700.
  • [33] Zhan J, Deng A, Jaksa M (2021).Optimizing micaceous soil stabilization using response surface method. J Rock MechGeotechEng 13(1): 212–220.
  • [34] Benayoun, F., Boumezerane, D., Bekkouche, S.R. et al.(2021). Optimization of geometric parameters of soil nailing using response surface methodology.Arab J Geosci14, 1965 (2021). https://doi.org/10.1007/s12517-021-08280-z.
  • [35] Y.L. Kuo , M.B. Jaksa , A.V. Lyamin, W.S. Kaggwa(2009). ANN-based model for predicting the bearing capacity of strip footingon multi-layered cohesive soil, Computers and Geotechnics 36 (2009) 503–516.
  • [36] JahedArmaghani, D., Shoib, R.S.N.S.B.R., Faizi, K. et al. (2017).Developing a hybrid PSO–ANN model for estimating the ultimate bearing capacity of rock-socketed piles.Neural Comput&Applic28, 391–405 (2017). https://doi.org/10.1007/ s00521-015-2072-z.
  • [37] Behera, R. N., C. R. Patra, N. Sivakugan, and B. M. Das. (2013). “Prediction of Ultimate Bearing Capacity of Eccentrically Inclined Loaded Strip Footing by ANN, Part I.” International Journal of Geotechnical Engineering 7 (1): 36–44. doi:10.1179/1 938636212Z.00000000012.
  • [38] Sahu, R., C. R. Patra, N. Sivakugan, and B. M. Das.(2017b). “Bearing Capacity Prediction of Inclined Loaded Strip Footing on Reinforced Sand by ANN.” In International Congress and Exhibition” Sustainable Civil Infrastructures: Innovative Infrastructure Geotechnology”, 97–109. Cham: Springer.
  • [39] Acharyya R, DeyA (2018). Assessment of bearing capacity for strip footing located near sloping surface considering ANN model. Neural Comput Appl. https://doi.org/10.1007/s00521- 018-3661-4.
  • [40] Acharyya R, Dey A, Kumar B (2018). Finite element and ANN-based prediction of bearing capacity of square footing resting on the crest of c-φ soil slope, International Journal of Geotechnical Engineering, DOI: 10.1080/19386362.2018.1435022.
  • [41] Sethy B.P, Patra C, Das B.C ,Sobhan K (2019). Prediction of ultimate bearing capacity of circular foundation on sand layer of limited thickness using artificial neural network, International Journal of Geotechnical Engineering, DOI: 10.1080/19386362.2019.1645437.
  • [42] Momeni, E., Armaghani, D.J., Fatemi, S.A. et al.(2018). Prediction of bearing capacity of thin-walled foundation: a simulation approach. Engineering with Computers34, 319–327 (2018). https://doi.org/10.1007/s00366-017-0542-x.
  • [43] Acharyya, R., Dey, A. (2018).Assessment of bearing capacity of interfering strip footings located near sloping surface considering artificial neural network technique.J.Mt. Sci.15, 2766–2780 (2018).https://doi.org/10.1007/s11629-018-4986- 2.
  • [44] HosseinMoayedi, SajadHayati, (2018). Modelling and optimization of ultimate bearing capacity of strip footing near a slope by soft computing methods,Applied Soft Computing, Volume 66,2018,Pages 208-219,ISSN 1568-4946,https://doi. org/10.1016/j.asoc.2018.02.027.
  • [45] Muhammad Nouman Amjad Raja, Sanjay Kumar Shukla, Geotextiles and Geomembranes, https://doi.org/10.1016/j. geotexmem.2021.04.007
  • [46] Raja MNA, Shukla SK (2020). An extreme learning machine model for geosynthetic-reinforced sandy soil foundations. Proc Inst Civil Eng-Geotech Eng 175(4):383–403.
  • [47] Amjad Raja MN et al., Predicting and validating the load-settlement behavior of large-scale geosynthetic-reinforced soil abutments using hybrid intelligent modeling, Journal of Rock Mechanics and Geotechnical Engineering, https://doi. org/10.1016/j.jrmge.2022.04.012
  • [48] Khan, M.U.A., Shukla, S.K. & Raja, M.N.A (2022). Load-settlement response of a footing over buried conduit in a sloping terrain: a numerical experiment-based artificial intelligent approach. Soft Comput 26, 6839–6856. https://doi. org/10.1007/s00500-021-06628-x
  • [49] Bardhan, A., Kardani, N., Alzo’ubi, A.K. et al(2022). A Comparative Analysis of Hybrid Computational Models Constructed with Swarm Intelligence Algorithms for Estimating Soil Compression Index. Arch Computat Methods Eng29, 4735–4773. https://doi.org/10.1007/s11831-022-09748-1
  • [50] Bardhan, A.; Kardani, N.; Alzo’ubi, A.K.; Roy, B.; Samui, P.; Gandomi, A.H (2022). Novel Integration of Extreme Learning Machine and Improved Harris Hawks Optimization with Particle Swarm Optimization-Based Mutation for Predicting Soil Consolidation Parameter. J. Rock Mech. Geotech. Eng., 14, 1588–1608.
  • [51] Muhammad Nouman Amjad Raja, Sanjay Kumar Shukla & Muhammad Umer Arif Khan (2021): An intelligent approach for predicting the strength of geosynthetic-reinforced subgrade soil, International Journal of Pavement Engineering, DOI: 10.1080/10298436.2021.1904237.
  • [52] Bardhan A, GuhaRay A, Gupta S, Pradhan B, Gokceoglu C (2022). A novel integrated approach of ELM and modified equilibrium optimizer for predicting soil compression index of subgrade layer of dedicated freight corridor. Transp Geotech 32:100678.
  • [53] Hasthi V, Raja MNA, Hegde A, Shukla SK (2022). Experimental and intelligent modelling for predicting the amplitude of footing resting on geocell-reinforced soil bed under vibratory load. Transp Geotech 100783.
  • [54] Montgomery D (2001). Design and analysis of experiments. New York: John Wiley and Sons.
  • [55] S.A. Maruyama, S.V. Palombini, T. Claus, F. Carbonera, P.F. Montanher, N.E.D. Souza, M. Matsushita, Application of box-behnken design to the study of fatty acids and antioxidant activity from enriched white bread, J. Braz. Chem. Soc. 24 (9) (2013) 1520–1529.
  • [56] Zerti, A., Yallese, M.A., Meddour, I. et al.(2019). Modeling and multi-objective optimization for minimizing surface roughness, cutting force, and power, and maximizing productivity for tempered stainless steel AISI 420 in turning operations. Int J AdvManuf Technol102, 135–157 (2019). https://doi. org/10.1007/s00170-018-2984-8
  • [57] Y. Nagata, K.H. Chu, (2003). Optimization of a fermentation mediumusing neural networks and genetic algorithms. Biotechnol.Lett.25, 1837–1842 (2003).
  • [58] B. Sarkar, A. Sengupta, S. De et al.,(2009). Prediction of permeatefluxduring electric field enhanced cross-flow ultrafiltration a neuralnetwork approach. Sep. Purif. Technol. 65, 260–268 (2009).
  • [59] Meddour, I., Yallese, M.A., Bensouilah, H. et al.(2018). Prediction of surface roughness and cutting forces using RSM, ANN, and NSGA-II in finish turning of AISI 4140 hardened steel with mixed ceramic tool.Int J AdvManuf Technol97, 1931–1949 (2018). https://doi.org/10.1007/s00170-018-2026-6.
  • [60] Kalman BL, Kwasny SC (1992). Why Tanh: choosing a sigmoidalfunction, Proc. Int. Jt. Conf Neural Network. Baltimore, 4 578–581.
  • [61] Labidi, A., Tebassi, H., Belhadi, S. et al.(2018). Cutting Conditions Modeling and Optimization in Hard Turning Using RSM, ANN and Desirability Function. J Fail. Anal.and Preven.18, 1017–1033 (2018).https://doi.org/10.1007/s11668-018-0501-x
  • [62] M. Ramezani, A. Afsari, (2015). Surface roughness and cutting forceestimation in the CNC turning using artificial neural networks.Manag. Sci. Lett. 5, 357–362 (2015).
  • [63] M. Rajendra, P.C. Jena, H. Raheman, (2009). Prediction of optimizedpretreatment process parameters for biodiesel production usingANN and GA. Fuel 88, 868–875 (2009).
  • [64] R.M. Garcia-Gimeno, C. Hervas-Martinez, R. Rodriguez-Perezetal.,(2005). Modelling the growth of Leuconostocmesenteroidesbyartificial neural networks.Int. J. Food Microbiol.105, 317–332(2005).
  • [65] K.R. Kashyzadeh, E. Maleki, (2017).Experimental investigation andartificial neural network modeling of warm galvanization andhardened chromium coatings thickness effects on fatigue life ofAISI 1045 carbon steel. J. Fail. Anal.Prev. 17(6), 1276– 1287(2017).
  • [66] Huang, C., and Tatsuoka, F. 1990. “Bearing capacity of reinforced horizontal sandy ground.”Geotext.Geomembr., 9, 51–80.
  • [67] Khing, K. H., Das, B. M., Puri, V. K., Cook, E. E., and Yen, S. C. 1993.“The bearing capacity of a strip foundation on geogridreinforcedsand.”Geotext.Geomembr., 124, 351–361.
  • [68] Shin, E. C., Das, B. M., Lee, E. S., and Atalar, C. 2002. “Bearingcapacity of strip foundation on geogrid-reinforced sand.”Geotech.Geologic. Eng., 20, 169–180.
  • [69]Cicek E, Guler E, Yetimoglu T (2015).Effect of reinforcementlength for different geosynthetic reinforcements on strip footing on sand soil. Soils Found 55(4):661–677.
  • [70] El Sawwaf M, Nazir AK (2010). Behavior of repeatedly loadedrectangular footings resting on reinforced sand. Alex EngJ49(4):349–356. https://doi.org/10.1016/j. Egg.2010.07.002
  • [71] Abu El-Soud S, BelalAM (2019).Numerical modeling of rigid stripshallow foundations overlaying geosythetics-reinforced loosefine sand deposits.Arab J Geosci.https://doi.org/10.1007/ s12517-019-4436-7
  • [72] Akinmusuru, J. O., and Akinboladeh, J. A. (1981). “Stability of loadedfootings on reinforced soil.”J. Geotech. Engrg.Div., 1076, 819–827.
  • [73] Das, B. M., and Omar, M. T. (1994). “The effects of foundation width onmodel tests for the bearing capacity of sand with geogrid reinforcement.”Geotech.Geologic. Eng., 12, 133–141.
  • [74] El Sawwaf, M. 2007. “Behavior of strip footing on geogrid-reinforcedsand over a soft clay slope.”Geotext.Geomembr., 25, 50–60.
  • [75] Boushehrian J, Hataf N. (2003).Experimental and numerical investigation of the bearing capacity of model circular and ring footing on reinforced sand. Geotextiles andGeomembranes 2003;21(4):241e56.
  • [76] Mosallanezhad M, Hataf N, Ghahramani A. (2008). Experimental study of bearing capacityof granular soils reinforced with innovative grid-anchor system. Geotechnicaland Geological Engineering 2008;26(3):299e312.
  • [77] Latha M, Somwanshi A. (2009).Effect of reinforcement form on the bearing capacity of square footings on sand. Geotextiles and Geomembranes 2009;27(6):409e22.
  • [78] DeMerchant MR, Valsangkar AJ, Schriver AB (2002). Plate loadtests on geogrid reinforced expanded shale lightweight aggregate. GeotextGeomembr 20:173–190.
  • [79] A.I Khuri, S. Mukhopadhyay, (2010).Response surface methodology, WIREs. Comput. Stat. 2 (2010)128-149.
  • [80] R.H. Myers, D.C. Montgomery, (2002). Response surface methodology: process and product optimization using designed experiments, 2nd ed. John Wiley and Sons, Inc. New York. (2002).
  • [81] A.K. Sahoo, P.C. Mishra, (2014). A response surface methodology and desirability approach for predictive modeling and optimization of cutting temperature in machining hardened steel, Inter. J. Indus. Eng. Comp. 5 (2014) 407-416.
  • [82] Bardhan, A.; Kardani, N.; Alzo’ubi, A.K.; Roy, B.; Samui, P.; Gandomi, A.H. Novel Integration of Extreme Learning Machine and Improved Harris Hawks Optimization with Particle Swarm Optimization-Based Mutation for Predicting Soil Consolidation Parameter. J. Rock Mech. Geotech. Eng. 2022, 14, 1588–1608.
  • [83] Khellaf A., Aouici H., Smaiah S., Boutabba S., Yallese M. A., Elbah M., (2016). Comparative assessment of two ceramic cutting tools on surface roughness in hard turning of AISI H11 steel: including 2D and 3D surface topography, Int J AdvManufTechnol, 10.1007/s00170-016-9077-3.
  • [84] Reddy NSK, Rao PV (2005). Selection of optimum tool geometry and cutting conditions using a surface roughness prediction model for end milling.Int J
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-efe5ef4b-fcad-4041-92ab-479a5c32261d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.