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SOME REMARKS OF DIFFERENT AGGREGATION
MODES APPLICATIONS WITHIN THE FRAMEWORK OF

INTUITIONISTIC FUZZY WEIGHTS

ANNA TIKHONENKO-KĘDZIAK AND MIROSŁAW KURKOWSKI

Abstract

In the classical intuitionistic fuzzy sets theory it is known, that the use of all aggrega-
tion modes is not always possible, because of the lack of definition of raising intuitionistic
fuzzy values to the intuitionistic fuzzy power. The main aim of this work is to introd-
uct an operation of raising of intuitionistic fuzzy values to an intuitionistic fuzzy power,
which does not require conversion to intuitionistic fuzzy values. Additionally, we will
present a heuristic method of raising an intuitionistic fuzzy values to the intuitionistic
fuzzy power and consideration about its properties.

1. Introduction

In the classical intuitionistic fuzzy sets theory it is well known that differ-
ent variants of the aggregation of local criteria give rise to different results.
It follows from the fact, that the validity of the stage of formulation of a
global criterion as an aggregation of the local criteria is dominant. It is ob-
vious that the evaluation of validity of the criteria is not essential in some
optimization processes and sometimes all local criteria have the same valid-
ity (weight) for decision-makers. In addition, the definition of weights by
using of real numbers sometimes is not possible. So, in some cases using the
transformation of verbal terms to interval or fuzzy values applied to various
types of aggregation modes is more accurate. There are many aggregation
modes using for decision making. They can be described not only by real
numbers [1, 2, 3, 4, 5, 6, 10, 11, 12, 13, 14, 15].
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Intuitionistic fuzzy sets proposed by Atanasov in [3] are one of the most
popular generalizations of the fuzzy sets theory. It is used primarily for
resolving of Multiple Criteria Decision Making (MCDM) [9, 25, 26, 27, 28,
29, 30] and group MCDM [5, 6, 32, 33, 35, 36, 37, 38] problems in the
cases, when value of the local criteria of alternatives and/or their weight
are intuitionistic fuzzy values.

Some problems with intuitionistic fuzzy uncertainty in framework of
MCDM are based on disadvantages of classical operations defined on in-
tuitionistic fuzzy values. In [7] some limitations of conventional operations
on fuzzy values were discussed. The proper critical examples can be found
in [19].

In the paper [8] an approach, based on intuitionistic fuzzy matrix and
relations between elements of this matrix, which are the intuitionistic fuzzy
sets, was proposed. It was proved in [19], that the method of comparing
intuitionistic fuzzy numbers proposed in [8] does not always lead to correct
results.

The next problem with the classical intuitionistic fuzzy sets theory is
the lack of the definition of raising an intuitionistic fuzzy values to the
intuitionistic fuzzy power. It is worth noticing that the lack of this definition
strongly reduces the number of aggregation modes that we can apply in
MCDM problems under condition of intuitionistic fuzzy uncertainty.

It was proved in the paper [19], that the use of Dempster-Shafer theory
based on conversion of intuitionistic fuzzy values to belief intervals allows
to get more reliable results and simplifies the calculations in the solution of
MCDM problem. But for cases when using of the conversion of intuitionistic
fuzzy values is not advisable, we propose an heuristic method of raising an
intuitionistic fuzzy values to intuitionistic fuzzy power.

The rest of the paper is set up as follows. In Section 2, we show basic
definitions of classical intuitionistic fuzzy sets theory. Section 3 is devoted
to an extension of intuitionistic fuzzy set theory in framework of Dempster-
Shafer theory. In Section 4, we show an operation on intuitionistic fuzzy
sets in framework of Dempster-Shafer theory and introduce new operators
of raising an intuitionistic fuzzy values to the intuitionistic fuzzy power, and
Intuitionistic Fuzzy Weighted Geometric operator with weights is presented
by intuitionistic fuzzy values. In section 5, we proved some properties of
exponentiation operation realized by transformation to belief intervals and
heuristic IFV method.

2. Basic definitions

Intuitionistic fuzzy sets theory proposed by Atanasov [3] is one of the
most popular generalizations of the fuzzy sets. It is used primarily for
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resolving MCDM problems [9, 25, 26, 27, 28, 29, 30] and group MCDM
[5, 6, 32, 33, 35, 36, 37, 38] in the cases, when value of the local criteria of
alternatives and/or their weight are intuitionistic fuzzy values.

The definition of intuitionistic fuzzy set is based on consideration of
membership function µ and non-membership function v of element x to
a set X, where 0 ≤ µ(x) + v(x) ≤ 1. Then we can construct a set
{〈x, µ(x), v(x)〉 : x ∈ X}, where 0 ≤ µ(x) + v(x) ≤ 1. For constant x ∈ X,
a pair 〈µ(x), v(x)〉 is called intuitionistic fuzzy value (IFV) or intuitionistic
fuzzy number. In the next consideration IFV will be described shortly as
〈µ, v〉 because for the fixed set X these two functions determine all such
values for all x ∈ X.

In [40] and [41] some aggregation operators based on the synthesis of
intuitionistic fuzzy sets and Dempster-Shafer Theory (DST) were presented.
It is easy to see that operators based on the Choquet integral [41] are useful
in situations, where the aggregate weight of the assessments have some
correlation with each other.

In the paper [18] the strong link between intuitionistic fuzzy sets and
DST was shown. This link allows the direct application of a Dempster’s
rule of combination in MCDM problems to aggregate local criteria with
intuitionistic fuzzy values. The link between IFS and DST was also revealed
in [23, 24].

In [3] Atanasov gives the following definition of the intuitionistic fuzzy
set:
Definition 1. Let X = {x1, x2, . . . , xn} be a finite universal set. A set

A is called intuitionistic fuzzy set (IFS) over the set X if A has the
following form: A = {〈xj , µA(xj), vA(xj)〉 : xj ∈ X} , where functions
µA : X → [0, 1] and vA : X → [0, 1] determines the degree of membership
and non-membership of the element xj ∈ X, and, for each xj ∈ X, the
inequality 0 ≤ µA(xj) + vA(xj) ≤ 1 holds.

A parameter πA(x) = 1−(µA(x)+vA(x)) is called an intuitionistic index
(or the hesitation degree) of the element x ∈ X [3]. Of course, for each
xj ∈ X, we have 0 ≤ πA(x) ≤ 1.

An intuitionistic set is the generalization of ordinary fuzzy one, so all
of the typical results from the classical fuzzy set theory may be convert in
framework of the intuitionistic fuzzy sets theory (IFST). Additionally all
researches based on ordinary fuzzy sets can be described by IFS’s. On the
other hand, IFST contains not only operations compatible on fuzzy sets, but
also such operations, that cannot be defined in framework of the ordinary
fuzzy set theory [20].

The operations of addition ⊕ and multiplication ⊗ on IFV are defined
shortly by Atanasov [4] as follows:
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Let A = 〈µA, vA〉 and B = 〈µB, vB〉 be IFV’s. Then we have:
(1) A⊕B = 〈µA + µB − µAµB, vAvB〉,
(2) A⊗B = 〈µAµB, vA + vB − vAvB〉.
These operators were constructed in such a way, that the result of its

using is IFV too. It is easy to prove that 0 ≤ µA + µB − µAµB ≤ 1 and
0 ≤ vA + vB − vAvB ≤ 1 .

Based on operations (1) and (2) the following expressions were received
in [16] for each integer n = 1, 2, .... We have:
nA = A⊕A⊕ . . .⊕A︸ ︷︷ ︸

n − times

= 〈1− (1− µA)n, vnA〉 and

An = A⊗A⊗ . . .⊗A︸ ︷︷ ︸
n − times

= 〈µnA, 1− (1− vA)n〉.

It was shown that these operations can be used not only for integer values,
but also for the real values λ, λ1, λ2 > 0, i.e.:

(3) λA = 〈1− (1− µA)λ, vλA〉, and (4) Aλ = 〈µλA, 1− (1− vA)λ〉.
The operations (1)-(4) have the following algebraic properties (see [39]).
Let A = 〈µA, vA〉 and B = 〈µB, vB〉 be IFV’s. Then:
(5) A⊕B = B ⊕A, (6) A⊗B = B ⊗A
(7) λ(A⊕B) = λA⊕ λB, (8) (A⊗B)λ = Aλ ⊗Bλ

(9) λ1A⊕ λ2A = (λ1 + λ2)A, (10) Aλ1 ⊗Aλ2 = Aλ1+λ2 .
Operations (1)-(4) are used for the aggregation of local criteria in the case

of solving the MCDM problems in terms of fuzzy intuitionistic uncertainty.
Let A1, A2, . . . , An be an IFV’s of local criteria and w1, w2, . . . , wn,

(
∑n

i=1wi = 1) be a weights of this criteria. Then the Intuitionistic Weighted
Arithmetic Mean (IWAM) may be specify by using the operation (1) and
(3) as follows [18]:

(11) IWAM = w1A1 ⊕ . . .⊕ wnAn = 〈1−Πn
i=1(1− µAi)

wi ,Πn
i=1v

wi
Ai
〉.

The aggregation operator (11) gets the result in the IFV form and it
is idempotent. This aggregation operator is the most popular operator
for solving MCDM problems under conditions of intuitionistic fuzzy uncer-
tainty. It is also worth noticing that there are no problems with the idem-
potent Intuitionistic Fuzzy Weighted Geometric operator (IFWG), which
can be obtained directly from (2) and (4):

(12) IFWG = Aw1
1 ⊗ . . .⊗Awn

n = 〈Πn
i=1µ

wi
Ai
, 1−Πn

i=1(1− vAi)
wi〉.

3. An extension of intuitionistic fuzzy set theory in
framework of DST

In the paper [18] the close link between intuitionistic fuzzy sets and DST
was demonstrated. This link allows the direct application of Dempster’s
rule of combination in MCDM problems to aggregate local criteria with
intuitionistic fuzzy values.
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In the paper [18] the possibility of transformation of intuitionistic fuzzy
values to Belief Intervals (BI), based on the extension of intuitionistic fuzzy
sets theory in the context of DST, was shown as well. This fact allows to
present mathematical operations on the IFVs as operations on BI.

Let A be an intuitionistic set over the set X. The set A is treat like a
question or proposition, and X is a proposition set, or a set of hypothesis,
which exclude each other, or a set of answers [41]. The structure of DST
is linked to mapping m, which is called the basic assignment function from
subset of X on interval m : 2X → [0, 1] such that m(∅) = 0,

∑
A = 1.

Subsets of X, for which this mapping does not assume zero, are called focal
elements.

In [34] Shafer introduced several new measures. The belief measure is a
mapping Bel : 2X → [0, 1] such that for any subset B from X occurring the
expression [18]:

(13) Bel(B) =
∑n

i=1m(Ai), ∅ 6= Ai ⊆ B, i = 1, . . . , n.
The next measure proposed by Shafer is a measure of plausibility, which

is a mapping Pl : 2X → [0, 1] such that for any subset B fromX the relation
(14) Pl(B) =

∑n
i=1m(Ai), Ai ∩B 6= ∅, i = 1, . . . , n

holds [18].
It is easy to see that Bel(B) ≤ Pl(B). A DST allows to show a clear

measure of ignorance about the opportunity B and its completion B as
the length of the interval [Bel(B), P l(B)] . This interval, called belief in-
terval (BI), can be also interpreted as the inaccuracy of the probability of
opportunity B [18].

In [25], Hong and Choi proposed an interval representation
[µA(xj), 1 − vA(xj)] of IFS A on X instead of a pair 〈µA(xj), vA(xj)〉 in
framework of MCDM problems.

The first obvious advantage of this approach is that the expression
[µA(xj), 1 − vA(xj)] represents the real interval with its right bound be-
ing not less than left one (due to the rule 0 ≤ µA(xj) + vA(xj) ≤ 1).
Moreover the second advantage is the consideration of the basic definition
of intuitionistic fuzzy sets theory in terms of the DST.

The following definition was proposed in [18].
Definition 2. Let X = {x1, x2, . . . , xn} be an universal finite set and

xj be an element from X represented by functions µA(xj), vA(xj) repre-
senting the membership and non-membership of the element xj ∈ X with
conditions mentioned in Definition 1. Intuitionistic fuzzy set A over X is
an object of the following form: A = {〈xj , BIA(xj) : xj ∈ X} , where
BIA(xj) = [BelA(xj), P lA(xj)] is a belief interval, and BelA(xj) = µA(xj),
and PlA(xj) = 1−vA(xj) are the belief and plausibility functions of xj ∈ X
belonging to a set A over X.
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At the first glance, the Definition 1 represents a simple re-definition of
IFS as an interval fuzzy set. However the semantic of DST allows to in-
crease the reliability of the calculations, when we deal with operations on
the IFVs and MCDM problems. In particular, such approach allows aggre-
gation of the local criteria represented by IFVs and development of MCDM
method without defuzzification, while the local criteria and their weights
are represented by IFVs. As a result, we get a final assessment in the form
of belief interval [18].

4. Operations on IFVs in framework of DST

The paper [19] suggests two approaches to formulate the operation on be-
lief intervals. The first one is based on a probability interpretation of belief
intervals, while the second one is based on non-probability interpretation.
It was proved in [19] that the operations based on the non-probability in-
terpretation of belief intervals have much better algebraic properties than
operations based on the probability approach. It is important to point out
that both these approaches generate arithmetic operators, which have much
better properties than arithmetic operations within the framework of the
classical intuitionistic fuzzy sets theory. Therefore, we will use only op-
erations defined in [19] based on non-probability interpretation on belief
intervals.

Let A = 〈µA, vA〉 and B = 〈µB, vB〉 be the IFVs represented by be-
lief intervals BI(A) = [Bel(A), P l(A)], BI(B) = [Bel(B), P l(B)], where
Bel(A) = µA, Pl(A) = 1 − v(A), and Bel(B) = µB, Pl(B) = 1 − v(B)
respectively. In this case, Bel(A) and Pl(A) are measures of belief and
plausibility, such as element xj ∈ X belongs to a set A over the set X. The
belief interval BI(A) = [Bel(A), P l(A)] can be treated as an interval be-
longing to a true power of ascertainment (argument, proposition, hypothesis
etc.).

In [19] the additional and multiplication operators on belief intervals are
shown. It is possible, when we define additional operator ⊕BNP of belief
intervals as follows:
BI(A)⊕BNP BI(B) = [Bel(A)+Bel(B)

2 , Pl(A)+Pl(B)
2 ].

So, if we have n different ascertainments represented by belief intervals
BI(Ai), then their sum can be defined as follows:
BI(A1)⊕BNP . . .⊕BNP BI(An)︸ ︷︷ ︸

n−times

= [ 1n
∑n

i=1Bel(Ai),
1
n

∑n
i=1 Pl(Ai)].

The multiplication operation of belief intervals we can define as follows
[19]:

(15) BI(A)⊗BNP BI(B) = [Bel(A)Bel(B), P l(A)Pl(B)].
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It is easy to see, that this operator is the same multiplication one in
conventional interval arithmetic [31]. The scalar multiplication is defined
in [19] as follows:

(16) λBI(A) = [λBel(A), λP l(A)],
where λ ∈ [0, 1] (for λ > 1 this operator does not always lead to the

real belief intervals). This restriction is justified by the fact that we can
define operations on belief intervals for MCDM problems, where λ usually
represents the weight of local criteria, which are smaller than one.

The exponentiation operation is defined in [19] as follows:
(17) (BI(A))λ = [(Bel(A))λ, (Pl(A))λ].
and it leads to a real belief interval for all λ ≥ 0.
Using the conventional rules of interval arithmetic [33], we obtain

BI(A)BI(B) = [α, β], where:
α = min{Bel(A)Bel(B), Bel(A)Pl(B), P l(A)Bel(B), P l(A)Pl(B)}, and
β = max{Bel(A)Bel(B), Bel(A)Pl(B), P l(A)Bel(B), P l(A)Pl(B)}.
Taking into account the properties of the belief intervals, we can lead

these expression to a following form [19]
(18) BI(A)BI(B) = [Bel(A)Pl(B), P l(A)Bel(B)].
The operators certain in that way, having good algebraic properties (the

same as in the case of the conventional theory of IFSs, see (5) -(10)). It can
be directly inferred from expressions (14)-(17):
BI(A)⊕BI(B) = BI(B)⊕BI(A), BI(A)⊗BI(B) = BI(B)⊗BI(A),
(BI(A)⊗BNP BI(B))λ = BI(A)λ ⊗BNP BI(B)λ,
BI(A)λ1 ⊗BNP BI(A)λ2 = (BI(A))λ1+λ2 ,
λBI(A)⊕BNP λBI(B) = λ(BI(A)⊕BNP BI(B)),
λ1BI(A)⊕BNP λ2BI(A) = (λ1 + λ2)(BI(A)⊕BNP BI(A)).

Using expressions (14) and (16) we get following Intuitionistic Weighted
Arithmetic Mean (IWAM):

(19) IWAMDSTNP (A1, . . . , An) = [ 1n
∑n

i=1wiBelAi ,
1
n

∑n
i=1wiPlAi ]

Observe, that this operator is not idempotent [19]. However, a small
modification of (19) (multiplication by n) allows to obtain an idempotent
operator:

(20) IWAMIDSTNP (A1, . . . , An) = [
∑n

i=1wiBelAi ,
∑n

i=1wiPlAi ]
The Intuitionistic Fuzzy Weighted Geometric operator (IFWGDSTP ) ob-

tained directly from (12) and (17) has the form [19]:
(21) IFWGDSTP (A1, . . . , An) = [Πn

i=1Bel
wi
Ai
,Πn

i=1Pl
wi
Ai

]

It is easy to see that the operator (21) is idempotent.
The Intuitionistic Fuzzy Weighted Geometric operator with weights

(IFWGBDSTP ) presented by belief intervals BI = [Beli, P li], i = 1, . . . , n,
obtained directly from (15) and (17) has the following form [19]:

(22) IFWGBDSTP (A1, . . . , An) = [Πn
i=1Bel

Pli
Ai
,Πn

i=1Pl
Beli
Ai

]
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It was shown in [19] that the result obtained by means of this operator
has the form of belief intervals. This operator is not idempotent. Of course,
the idempotence of the operator (21) is guaranteed by the normalization of
weight value in the form of the real numbers, or

∑n
i=1wi = 1. Given that

in (22) weights are have a belief interval’s form BIi = [Beli, P li] we have a
problem with their normalization [19].

Using the proposed approach (15) and (20), we get IWAM in the case
when the local criteria and their weights are IFVs.

Let BIi = [Beli, P li], i = 1, . . . , n, be belief intervals corresponding to the
intuitionistic fuzzy weights of the local criteria Ai, i = 1, . . . , n presented by
belief intervals BI(Ai) = [BelAi , P lAi ], i = 1, . . . , n.

Then, from (15) and (19) we get [19]
(23) IWAMBDSTNP (A1, . . . , An) = [ 1n

∑n
i=1BeliBelAi ,

1
n

∑n
i=1 PliPlAi ]

The simple modification of foregoing operator (multiplying by n) allows
to obtain a more handy operator [19]:

(24) IWAMBDSTNP (A1, . . . , An) = [
∑n

i=1BeliBelAi ,
∑n

i=1 PliPlAi ]
This operator is not idempotent. Of course, the idempotence of operator

(24) is guaranteed by the normalization of weight value in the form of the
real numbers, or

∑n
i=1wi = 1, while in (21) weights have a belief interval’s

form BI = [Beli, P li], i = 1, . . . , n.
Among the basic properties of the aggregation operations (boundary

conditions, monotonicity, continuity, symmetry, idempotence, and others),
idempotence seems to be particularly important in MCDM problems. In
conclusion we can say that the operators introduced in the framework of
the non-probability treatment of belief interval have their counterparts in
the classical theory of IFSs [19].

So, for example despite the fact, that in the classical intuitionistic fuzzy
sets theory is no definition of raising an IFV to intuitionistic fuzzy power.
Taking into account the analysis of the raise to the power using conversion
IFSs to belief intervals we get the following expression:

(25) AB = 〈µ1−vBA , 1− (1− vA)µB 〉.
Let us consider an example of calculating using the convert to belief

intervals and expression (29).
Example 1. Let A = 〈0.78, 0.2〉 and B = 〈0.44, 0.33〉. Then BI(A) =

[0.78, 0.8] and BI(B) = [0.44, 0.67], so BI(A)BI(B) = [0.8467, 0.9065]. Us-
ing expression (25), we get AB = 〈0.8467, 0.9065〉. It is easy to see, that
the results coincide qualitatively, and BI(AB) = [0.8467, 0.9065] too.

Similarly, their equivalent operator is an operator presented in the fol-
lowing expression:

(26) AB = 〈Πn
i=1µ

(1−vi)
Ai

, 1−Πn
i=1(1− vAi)

µi〉.
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C1 C2 C3

A1 (0.780, 0.200, 0.020) (0.661, 0.190, 0.149) (0.600, 0.300, 0.100)
A2 (0.770, 0.200, 0.030) (0.685, 0.299, 0.016) (0.650, 0.150, 0.200)
A3 (0.556, 0.400, 0.044) (0.459, 0.229, 0.312) (0.500, 0.200, 0.300)

Table 1. An assessment of alternatives according to the
three criteria in the intuitionistic fuzzy form

It was proved in [21] that the approach to the comparison of intervals
based on the subtraction operation compartments intervals ∆A−B has the
explicit advantages in comparison with other methods.

Then, regardless of whether the belief intervals intersect or not, we have
BI(A) > BI(B) in the case when subtraction of interval BI(A) is bigger
than subtraction of interval BI(B), or:

(27) BI(A) > BI(B), if Bel(A)+Pl(A)2 > Bel(B)+Pl(B)
2 .

From the expression (27), we can deduce (see [20]), that BI(A) > BI(B),
if

(28) BI(A) > BI(B), if Bel(A) + Pl(A) > Bel(B) + Pl(B) .
It is easy to see, that this inequality is an equivalent to the inequal-

ity, or at a glance, where and are score functions. If (Bel(A)+Pl(A)) =
(Bel(B)+Pl(B)) then BI(A) = BI(B).

5. Comparison of results obtained

In this section we compare the result obtained by aggregation modes in
the framework of classical intuitionistic fuzzy approach and approach based
on DST.

Consider the results obtained using the expressions on IWAM (11) and
IWAMDSTNP (24).
Example 2. Let us consider that in the MCDM problem alternatives are

presented by IFV, while the weights of the local criteria are presented by
real numbers. Data obtained during the analysis of the various alternatives
are presented in the Table 1.

In this example, weights have the following form:
(29) W = [w1, w2, w3] = [0.33, 0.35, 0.32].
It is easy to see that the validity of the criteria in this example are close

to each other.
Then, using the expression (11) on additive aggregation IWAM , we ob-

tain the results shown in the Table 2.
However, in the case of consideration of this example in the framework

of DST , first we need to convert the values shown in table 1 to the value
in the form of belief intervals. Modified data are presented in the Table 3.
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µAi vAi S(Ai), i = 1, 2, 3 Ranking
A1 0.7142 0.2555 0.4588 1
A2 0.6314 0.2188 0.4126 2
A3 0.5730 0.2215 0.3515 3

Table 2. Ranking obtained by IWAM aggregation for
IFV s Intuitionistic fuzzy assessment

C1 C2 C3

BI(A1) [0.780, 0.800] [0.661, 0.810] [0.600, 0.700]
BI(A2) [0.770, 0.800] [0.685, 0.701] [0.650, 0.850]
BI(A3) [0.556, 0.600] [0.459, 0.771] [0.500, 0.800]

Table 3. Assessment of alternatives according to the three
criteria in belief intervals form

Interval assessment Numerical assessment Ranking
A1 [0.1755, 0.1833] 0.1794 2
A2 [0.3369, 0.4260] 0.3815 1
A3 [0.1108, 0.1488] 0.1298 3
Table 4. Ranking obtained by IWAMDSTNP aggregation
for BI’s

Considering the expressions (24) and (2) and the data contained in table
3, we obtain results for IWAMDSTNP presented in the Table 4.

It is easy to see the difference between the results presented in Tables
2 and 4. Such incompatibility we have due to the exchange of the multi-
plication operator to the exponentiation operator. This is because, among
other, the lack of precision of the results obtained by the formula (11) . To
the benefit of the second method (24) speaks also using a direct interval
extension, the advantages of which are presented in [21].
Example 3. Consider the Example 2 for IFWGBDSTP (22) and its

equivalent operator IFWGI (26) for the following intuitionistic fuzzy weights:

(30) W = [w1, w2, w3] =

 0.44 0.33 0.23
0.46 0.32 0.22
0.44 0.34 0.22

 .
The weights converted to belief intervals are presented in the expression

(31).

(31) BI[W ] = [BI1, BI2, BI3] =

 0.44 0.67
0.46 0.68
0.44 0.66

 .
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Interval assessment Numerical assessment Ranking
A1 [0.4796, 0.6563] 0.5679 1
A2 [0.3436, 0.6839] 0.5137 3
A3 [0.3399, 0.7214] 0.5307 2

Table 5. Ranking obtained by aggregation for BI

µAi vAi S(Ai), i = 1, 2, 3 Ranking
A1 0.4796 0.3437 0.1359 1
A2 0.3436 0.3161 0.0275 3
A3 0.3399 0.2786 0.0613 2

Table 6. Ranking obtained by IFWGI aggregation for IFV s.

BI(An) Numerical assessment Ranking
A1 [0.4796, 0.6563] 0.5679 1
A2 [0.3436, 0.6839] 0.5137 3
A3 [0.3399, 0.7214] 0.5307 2

Table 7. Ranking of belief intervals of IFWGI.

C1 C2 C3

A1 (0.580, 0.200, 0.220) (0.651, 0.190, 0.159) (0.600, 0.300, 0.100)
A2 (0.670, 0.100, 0.230) (0.585, 0.299, 0.116) (0.650, 0.150, 0.200)
A3 (0.556, 0.400, 0.044) (0.459, 0.229, 0.312) (0.500, 0.200, 0.300)

Table 8. Assessment of alternatives according to the three
criteria in intuitionistic fuzzy form

The results obtained by using IFWGBDSTP (22) and IFWGI (26) are
presented in Tables 5 and 6, respectively.

Then calculated by the expression (26) provides results quality equivalent
to results obtained by the expression (22), as it shown in Tables 5-7.

It’s easy to see, that ranking and number results are the same in case
of both aggregation modes. That’s indicate that the heuristic method of
calculation IFWGI has the same precision as IFWGIDSTNP .
Example 4. Consider the results obtained by using the IFWGBDSTNP

(22) and IWAMBDSTNP (24). Assume that, in the MCDM problem,
alternatives and weights of local criteria are presented by IFV . Data ob-
tained during the analysis of the various alternatives are presented in the
Table 8.

In this example, weights have the following form
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C1 C2 C3

BI(A1) [0.580, 0.800] [0.651, 0.810] [0.600, 0.700]
BI(A2) [0.670, 0.900] [0.585, 0.701] [0.650, 0.850]
BI(A3) [0.556, 0.600] [0.459, 0.771] [0.500, 0.800]

Table 9. Assessment of alternatives according to the three
criteria in belief intervals form

Interval assessment Numerical assessment Ranking
A1 [0.2047, 0.5137] 0.3592 2
A2 [0.2599, 0.5173] 0.3886 1
A3 [0.1983, 0.517] 0.3577 3
Table 10. Ranking obtained by IWAMIDSTP for BIs

Interval assessment Numerical assessment Ranking
A1 [0.3582, 0.7517] 0.5550 1
A2 [0.3054, 0.5702] 0.4378 3
A3 [0.3399, 0.6127] 0.4763 2
Table 11. Ranking obtained by IFWGBDSTP for BIs

(32) W = [w1, w2, w3] =

 0.34 0.33 0.33
0.46 0.32 0.22
0.44 0.34 0.32

 .
Firstly, we need to convert the values shown in the Table 8 to the values

in the form of belief intervals. Modified data presented in the Table 9.
Weights converted to belief intervals are presented in the expression (33).

(33) BI[W ] = [BI1, BI2, BI3] =

 0.34 0.67
0.46 0.68
0.34 0.66

 .
Then, using the formula (24) on additive aggregation IWAMIDST , we

get the results shown in table 10.
Taking into account the expressions (33) and (22) and the data contained

in table 9, we obtain results for presented in table 11.
It is easy to see the difference in the results presented in tables 10 and 11.

As it was proved in [17], multiplication aggregation mode is more believable
than the additive aggregation mode.
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6. Final remarks

In this paper a few usefull methods of solving problems with intuitionistic
fuzzy weights in order to be able to use any aggregation modes for decision-
making problems are proposed. The first of them is based on a new operator
of raising an intuitionistic fuzzy values to intuitionistic fuzzy power and
allows to use a classic form of intuitionistic fuzzy sets. The second one is
based on Dempster-Shafer theory and modifications of intuitionistic fuzzy
sets to belief intervals. This method allows to use an interval arithmetic
and direct interval extension, the advantages of which is shown in [21], to
solve MCDM problems.
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