PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prediction of Waviness Values in Skew Rolling Using Machine Learning Methods

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Skew rolling with three rolls is used for producing axisymmetric parts. In this method, the tools are spaced every 120° on the circumference of the workpiece. They are also set askew relative to the rolling axis. Cross sectional reduction is made effective by moving the tapered rolls closer to or away from the center line of the workpiece. Experiments were conducted with variable initial conditions of the rolling process to examine surface topography of rolled parts. Obtained experimental results were then analyzed using machine learning methods in order to determine the most effective regression model with the highest coefficient of determination R2 for waviness prediction.
Twórcy
autor
  • Faculty of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 36, 20–618 Lublin, Poland
  • Faculty of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 36, 20–618 Lublin, Poland
  • Faculty of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 36, 20–618 Lublin, Poland
  • Faculty of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 36, 20–618 Lublin, Poland
  • Faculty of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 36, 20–618 Lublin, Poland
Bibliografia
  • 1. Meyer M., Stonis M., Behrens B.-A. Cross Wedge rolling and Bi-directional forming of preforms for crankshafts. Production Engineering Research and Development. 2015; 9: 61–71.
  • 2. Li Q., Lovell M. Cross Wedge rolling failure mechanisms and industrial application. The International Journal of Advanced Manufacturing Technology. 2008; 37: 265–278.
  • 3. Yang H., Zhang L., Hu Z. The Analysis of the Stress and Strain in Skew Rolling. Advanced Materials Research. 2012; 538-541: 1650–1653.
  • 4. Stefanik A., Morel A., Mróz S. Theoretical and Experimental Analysis of Aluminium Bars Rolling Process In Three-High Skew Rolling Mill. Archives of Metallurgy and Materials. 2015; 60: 809–813.
  • 5. Cakircali M., Kilicaslan C., Guden M., et al. Cross wedge rolling of a Ti6Al4V (ELI) alloy: the experimental studies and the finite element simulation of the deformation and failure. The International Journal of Advanced Manufacturing Technology. 2013; 65: 1273–1287.
  • 6. Pater Z., Tomczak J., Bulzak T., et al. Numerical and experimental study on forming preforms in a CNC skew rolling mill. Archives of Civil and Mechanical Engineering. 2022; 22(54): 1–21.
  • 7. Pater Z., Tomczak J., Lis K., et al. Forming of rail car axles in a CNC skew rolling mill. Archives of Civil and Mechanical Engineering. 2020; 20: 1–13.
  • 8. Wang J., Shu X., Zhang S., et al. Research on microstructure evolution of the three-roll skew rolling hollow axle. The International Journal of Advanced Manufacturing Technology. 2022; 118: 837–847.
  • 9. Wang J.T, Shu X.D., Zhang S., et al. Research on variation law of workpiece temperature of three roll skew rolling hollow axle. IOP Conf. Ser.: Materials Science and Engineering. 2022; 1270: 1–6.
  • 10. Shu X., Zhang S., Shu C., et al.: Research and prospect of flexible forming theory and technology of hollow shaft by threeroll skew rolling. The International Journal of Advanced Manufacturing Technology. 2022; 123: 689–707.
  • 11. Pater Z., Tomczak J., Bulzak T. Problems of forming stepped axles and shafts in a 3-roller skew rolling mill. Journal of Materials Research and Technology. 2020; 9: 10434–10446.
  • 12. Tomczak J., Pater Z., Bulzak T., et al. Design and technological capabilities of a CNC skew rolling mill. Archives of Civil and Mechanical Engineering. 2021; 21: 1–17.
  • 13. Lechwar S., Rauch Ł., Pietrzyk M. Use of Artificial Intelligence in Classification of Mill Scale Defects. Steel Research International. 2015; 86(3): 266–277.
  • 14. Kurra S., Rahman N.H., Regalla S.P., et al. Modeling and optimization of surface roughness in single point incremental forming proces. Journal of Materials Research and Technology. 2015; 4(3): 304–313.
  • 15. scikit-learn. Available online: https://scikit-learn. org/stable/supervised_learning.html#supervised-learning (accessed on 19 June 2023)
  • 16. dmlc XGBoost. Available online: https://xgboost. readthedocs.io/en/stable/ (accessed on 19 June 2023)
  • 17. SHAP. Available online: https://shap.readthedocs. io/en/latest/ (accessed on 19 June 2023)
Uwagi
Opracowanie reOpracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-efd96af9-f81a-472e-b212-b6980917bdc8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.