PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Scalar damage variable determined in the uniaxial and triaxial compression conditions of sandstone samples

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article is based on the results of uniaxial and triaxial compression tests, performed on Wustenzeller sandstone. An overview of the possible definitions of damage variable describing the process of damage development on the basis of various hypotheses has been presented in the first part of the article. In the main part of the article the author has presented the results of laboratory investigations, where the state of damage and its changes in rock samples under uniaxial and triaxial compression conditions were being observed. Using a modified procedure of triaxial tests, a definition of damage variable, determined on the basis of changes of volumetric stiffness of an examined rock, has been developed. Damage variable defined this way, in relation to a variable determined on the basis of axial stiffness changes, points to some anisotropy effects of damage phenomenon. The results obtained from both methods have been compared whereas the relations determining the evolution of damage variable in the loading process have been established.
Wydawca
Rocznik
Strony
73--84
Opis fizyczny
Bibliogr. 24 poz., rys.
Twórcy
autor
  • Department of Geomechanics, Civil Engineering and Geotechnics, AGH University of Science and Technology
Bibliografia
  • [1] ASHBY M.F., SAMMIS C.G., The Damage Mechanics of Brittle Solids in Compression, Pure Appl. Geophys., Vol. 133, Issue 3, 1990, 489–521.
  • [2] BASISTA M., GROSS D., A note on brittle damage description, Mech. Res. Comm., 16, 1989 , 147–154.
  • [3] BAUD P., SCHUBNEL A., WONG T-F., Dilatancy, compaction and failure mode in Solnhofen limestone, J. Geophys. Res. Vol. 195, 2000, 19289–19303.
  • [4] BÉSUELLE P., BAUD P., WONG T.-F., Failure Mode and Spatial Distribution of Damage in Rothbach Sandstone in the Brittle-ductile Transition, Pure Appl. Geophys., 160, 2003, 851–868.
  • [5] CHABOCHE J.-L., Continuum damage mechanics: Part I: General concepts, Part II: Damage growth, crack initiation and crack growth, J. Appl. Mechanics, 55, 1988, 59–71.
  • [6] CIEŚLIK J., JAKUBOWSKI J., TAJDUŚ A., The change of axial stiffness and the development of sandstone samples damage through the conventional triaxial tests, Kwartalnik Górnictwo i Geoinżynieria, R. 35, z. 2, 2011, 163–170.
  • [7] DRAGON A., HALM D., A mesocrack damage and friction coupled model for brittle materials, Damage Mechanics in Engineering Materials, 1998, 321–335.
  • [8] EL BIED A., SULEM J., MARTINEAU F., Microstructure of shear zones in Fontainebleau sandstone, Int. J. Rock Mech. Min. Sci., 39, 7, 2002, 917–932.
  • [9] GAMBROTTA L., LAGOMERSINO S., A microcrack damage model for brittle materials, Int. J. Solids Structures, 30, 1993, 177–198.
  • [10] HALLBAUER D.K., WAGNER K., COOK N.G.W., Some observations concerning the microscopic and mechanical behavior of quartzite specimens in stiff, triaxial compression tests, Int. J. Rock Mech. Min. Sci., Vol. 10, 1973, 713–726.
  • [11] HORII H., NEMAT-NASSER S., J. Geophys. Res., Vol. 90, No. B4, 1985, 3105–3125.
  • [12] KEMENY J.M., COOK N.G.W., Crack models for the failure of rock under compression, Proc. 2nd Int. Conf. on Constitutive Laws for Engineering Materials, Theory and Applications, (eds. C.S. Desai, E. Krempl, P.D. Kiousis and T. Kundu) 1, 879–887, Tucson, AZ: Elsevier 1987.
  • [13] KRAJCINOVIC D., Damage Mechanics, Elsevier 1996.
  • [14] KRAJCINOVIC D., MASTILOVIC S., Some fundamental issues of damage mechanics, Mech. Matter, 21, 1995, 217–230.
  • [15] LEMAITRE J., A Course of Damage Mechanics, Springer 1992.
  • [16] LITEWKA A., BOGUCKA J., DĘBIŃSKI J., Deformation induced damage and anisotropy of concrete, Archives of Civil Engineering, 42, 4, 1996, 425–445.
  • [17] LOCKNER D.A, BYERLEE J.D., KUKSENKO V., PONOMAREV A., SIDORIN A., Quasi-static fault growth and shear fracture energy in granite, Nature, 350, 1991, 39–42.
  • [18] MOORE D.E., LOCKNER D.A., The role of microcracking in shear-fracture propagation in granite, J. Struct. Geol., 17, 1995, 5–114.
  • [19] PATERSON M.S., WONG T.-F., Experimental rock deformation – the brittle field, Second Edition, Springer 2005.
  • [20] RAWLING G.C., BAUD P., WONG T.-F., Dilatancy, brittle strength and anisotropy of foliated rocks: experimental deformation and micromechanical modeling, J. Geophys. Res. 107, 2002, 2234.
  • [21] SKRZYPEK J., Podstawy Mechaniki Uszkodzeń, Wydawnictwo Politechniki Krakowskiej, Kraków 2006.
  • [22] TOMICZEK K.M., Damage variable D of rocks under direct tension condition, Kwartalnik Górnictwo i Geoinżynieria, R 32, z. 1, 2008, 347–358.
  • [23] VAJDOVA V., ZHU W., CHEN T.-M.N., WONG T.-F., Micromechanics of brittle faulting and cataclastic flow in Tavel limestone, Journal of Structural Geology, 32, 2010, 1158–1169.
  • [24] WONG T.-F., Micromechanics of faulting in westerly granite, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., Vol. 19, Issue 2, 1982, 143–160
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-efd4c972-bd36-4f7d-b92b-9e0ca499389d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.