PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Automation of CMOS technology migration illustrated by RGB to YCrCb analogue converter

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper illustrates a practical example of technology migration applied to the colour space converter realized in CMOS technology. The element has analogue excitation and response signals expressed in current mode. Such converter may be incorporated into an integrated vision sensor for preconditioning acquired image data. The idea of a computer software tool supporting the automated migration and design reuse is presented as the major contribution. The mentioned tools implement the Hooke-Jeeves direct search method for performing the multivariable optimization. Our purpose is to ensure transferring the circuit between usable fabrication technologies and preserving its functional properties. The colour space converter is treated as the case study for performance evaluation of the proposed tool in cooperation with HSPICE simulation software. The original CMOS technology files for Taiwan semiconductor (TSMC) plant were utilized for the research. The automated design migration from 180 nm into 90 nm resulted with obtaining compact IC layout characterized by a smaller area and lower power consumption. The paper is concluded with a brief summary that proves the usability of the proposed tool in designing CMOS cells dedicated for low power image processing.
Twórcy
autor
  • Chair of Computer Engineering, Poznan University of Technology, 5 M. Skłodowskiej-Curie Sq., 60-965 Poznan, Poland
autor
  • Chair of Computer Engineering, Poznan University of Technology, 5 M. Skłodowskiej-Curie Sq., 60-965 Poznan, Poland
  • Chair of Computer Engineering, Poznan University of Technology, 5 M. Skłodowskiej-Curie Sq., 60-965 Poznan, Poland
  • Chair of Computer Engineering, Poznan University of Technology, 5 M. Skłodowskiej-Curie Sq., 60-965 Poznan, Poland
Bibliografia
  • 1. H.-S. P. Wong, D. J. Frank, et al. “Nanoscale CMOS”, Proc. IEEE. 87, 537-569 (1999).
  • 2. T. Levi, T. J. Lewis, et al., “A CMOS resizing methodology for analogue circuits”, IEEE Des. Test Compu. 26, 78-87 (2009).
  • 3. K. Francken and G. Gielen, “Methodology for analogue technology porting including performance tuning”, Proc. IEEE Int. Conf. on Circuits and Systems, pp. 415-418, Orlando, 1999.
  • 4. A. F. B. Adnan, A. K. B Aain, M. N. B. Marsono, I. B. Kamisan, and I. A. Grout, “Second-stage tuning procedure for analogue CMOS design reuse methodology”, Electron. Lett. 48, 990-992 (2012).
  • 5. T. Yang, M. Gao, S. Wu, and D. Guo, “A new reuse method of analogue circuit design for CMOS technology migration”, Int. Conf. on Anti-Counterfeiting Security and Identification in Communication, pp. 112-115 (2010).
  • 6. A. Handkiewicz, Mixed-Signal Systems, A Guide to CMOS Circuit Design, edited by John Wiley & Sons INC, New York, 2002.
  • 7. K. Kimo and P. In-Cheol, “Combined image signal processing for CMOS image sensors”, IEEE Symp.on Circuits and Systems., pp. 3185-3188, Island of Kos, 2006.
  • 8. E. Vittoz, “Analogue VLSI signal processing: Why, where and how”, Analog Integr. Circ. S. 6, 27-44 (1994).
  • 9. B. Ahirwal, M. Khadtare, and R. Mehta, “FPGA based system for colour space transformation RGB to YIQ and YCbCr”, Proc. Int. Conf. on Intelligent and Advanced Systems, pp. 1345-1349, Kuala Lumpur, 2007.
  • 10. S-A. Li, C-Y. Chen, C-H Chen,” Design of a shift-and-add based hardware accelerator for colour space conversion”, J. Real-Time Image Proc., http://dx.doi.org/10.1007/ s11554-013-0324-7 (1999).
  • 11. M. Goroń, “Parallel performance of the fine-grain pipeline FPGA image processing system”, Opto−Electron. Rev., 20, 153-158 (2012).
  • 12. A. Handkiewicz, P. Sniatala, G. Palaszynski, S. Szczesny, P. Katarzynski, M. Melosik, M. Naumowicz, “Automatem DCTgeneration using ample language”, Proc. Int. Conf. on Mixed Design of Integrated Circuits and Systems, pp. 215-218, Warsaw, (2010).
  • 13. A. Handkiewicz, Sz. Szczesny , M. Naumowicz, M. Melosik, P. Katarzynski „Generacja layoutu filtrow SI w strategii wierszowej”, Przegląd Elektrotechniczny, 10, 80-83 (2011). (IN POLISH).
  • 14. S. Szczęsny, M. Naumowicz, A. Handkiewicz, “SI-Studio - environment for SI circuits design automation”, Bull Pol. Acad. Sci-Te. Vol. 60, pp. 757-762 (2013).
  • 15. R. Hooke and T. A. Jeeves, “Direct search solution of numerical and statistical problems”, J. Association for Comput. Machinery 8, 212-229 (1961).
  • 16. M. Melosik and M. Naumowicz, “Implementation and comparison for methods of solving non-linear algebraic equations in design of lossless prototype circuits”, Engineering Thesis, 2008.
  • 17. L. L. Lewyn, T. Ytterdal, C. Wulff, and K. Martin, “Analogue circuit design in nanoscale cmos technologies”, Proc. IEEE 97, 1687-1714, (2009).
  • 18. J. Puhan, T. Tuma, and I. Fajfar, “Optimisation methods in spice, a comparison”, Proc. Eur. Conf. on Circuit Theory and Design 2, 1279-1282 (1999).
  • 19. L. Tutelea and I. Boldea, “Induction motor electromagnetic design optimization: Hooke Jeeves method versus genetic algorithms”, Proc. Int. Conf. on Optimization of Electrical and Electronic Equipment, 485-492 (2010).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-efcf060a-e5b7-4ece-bc85-c8996ddd4827
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.