PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling rainfall runoff for identification of suitable water harvesting sites in Dawe River watershed, Wabe Shebelle River basin, Ethiopia

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Scarcity of freshwater is one of the major issues which hinders nourishment in large portion of the countries like Ethiopia. The communities in the Dawe River watershed are facing acute water shortage where water harvesting is vital means of survival. The purpose of this study was to identify optimal water harvesting areas by considering socioeconomic and biophysical factors. This was performed through the integration of soil and water assessment tool (SWAT) model, remote sensing (RS) and Geographic Information System (GIS) technique based on multi-criteria evaluation (MCE). The parameters used for the selection of optimal sites for rainwater harvesting were surface runoff, soil texture, land use land cover, slope gradient and stakeholders’ priority. Rainfall data was acquired from the neighbouring weather stations while information about the soil was attained from laboratory analysis using pipette method. Runoff depth was estimated using SWAT model. The statistical performance of the model in estimating the runoff was revealed with coefficient of determination (R2) of 0.81 and Nash–Sutcliffe Efficiency (NSE) of 0.76 for monthly calibration and R2 of 0.79 and NSE of 0.72 for monthly validation periods. The result implied that there's adequate runoff water to be conserved. Combination of hydrological model with GIS and RS was found to be a vital tool in estimating rainfall runoff and mapping suitable water harvest home sites.
Wydawca
Rocznik
Tom
Strony
186--195
Opis fizyczny
Bibliogr. 46 poz., rys., tab.
Twórcy
  • Haramaya University, Haramaya Institute of Technology, Hydraulic and Water Resources Engineering Department, P.O. Box 138 Dire Dawa, Ethiopia
  • Haramaya University, Haramaya Institute of Technology, Water Resources and Irrigation Engineering Department, P.O. Box 138 Dire Dawa, Ethiopia
  • Haramaya University, Haramaya Institute of Technology, Hydraulic and Water Resources Engineering Department, P.O. Box 138 Dire Dawa, Ethiopia
Bibliografia
  • ABBASPOUR K. C., ROUHOLAHNEJAD E., VAGHEFI S., SRINIVASAN R., YANG H., KLØVE B. A. 2015. Continental-scale hydrology and water quality model for Europe: Calibration and uncer-tainty of a high-resolution large-scale SWAT model. Journal of Hydrology. Vol. 524 p. 733–752. DOI 10.1016/j.jhydrol. 2015.03.027.
  • ABDO K.S., FISEHA B.M., RIENTJES T.H.M., GIESKE A.S.M., HAILE A.T. 2009. Assessment of climate change impacts on the hydrology of Gilgel Abay catchment in Lake Tana basin, Ethiopia. Hydrological Processes. Vol. 23 p. 3661–3669. DOI 10.1002/hyp.7363.
  • ADHAM A., RIKSEN M., OUESSAR M., RITSEMA C. 2016a. Identification of suitable sites for rainwater harvesting structures in arid and semi-arid regions: A review. International Soil and Water Conservation Research. Vol. 4. Iss. 2 p. 108–120. DOI 10.1016/j.iswcr.2016.03.001.
  • ADHAM A., RIKSEN M., OUESSAR M., RITSEMA C.J. 2016b. A methodology to assess and evaluate rainwater harvesting techniques in semi-arid regions. Water. Vol. 8. Iss. 5 p. 198–221. DOI 10.3390/w8050198.
  • ADHAM A., SAYL K.N., ABED R., ABDELADHIM M.A., WESSELING J.G., RIKSEN M., FLESKENS L., KARIM U., RITSEMA C.J. 2018. A GIS-based approach for identifying potential sites for harvesting rainwater in the Western Desert of Iraq. International Soil and Water Conservation Research. Vol. 6. Iss. 4 p. 297–304. DOI 10.1016/j.iswcr.2018.07.003.
  • AL-ADAMAT R., ALAYYASH S., AL-AMOUSH H., AL-MESHAN O., RAWAJFIH Z., SHDEIFAT A., AL-HARAHSHEH A., AL-FARAJAD M. 2012. The combination of indigenous knowledge and geoinformatics for water harvesting siting in the Jordanian Badia. Journal of Geographic Information System. Vol. 4. No. 4 p. 366–376. DOI 10.4236/jgis.2012.44042.
  • AL-HANBALI A., ALSAAIDEH B., KONDOH A. 2011. Using GIS-based weighted linear combination analysis and remote sensing techniques to select optimum solid waste disposal sites within Mafraq city, Jordan. Journal of Geographic Information System. Vol. 3. No. 4 p. 267–278. DOI 10.4236/ jgis.2011.34023.
  • ARNOLD J.G., MORIASI D.N., GASSMAN P.W., ABBASPOUR K.C., WHITE M., SRINIVASAN R., SANTHI C., HARMEL R.D., VAN GRIENSVEN A., VAN LIEW M.W., KANNAN N., JHA M.K. 2012. SWAT: Model use, calibration, and validation. Transactions of the ASABE. Vol. 55. Iss. 4 p. 1491–1508. DOI 10.13031/ 2013.42256.
  • ARNOLD J.G., MUTTIAH R.S., SRINIVASAN R., ALLEN P.M. 2000. Regional estimation of base flow and groundwater recharge in Upper Mississippi River basin. Journal of Hydrology. Vol. 227 p. 21–40. DOI 10.1016/S0022-1694(99)00139-0.
  • BAKIR M., XINGNAN Z. 2008. GIS and remote sensing applications for rain water harvesting in the Syrian Desert (Al-Badia). Proceedings of the 12th International Water Technology Conference, March 2008. Alexandria, Egypt p. 73–82.
  • BEGOU J., JOMAA S., BENABDALLAH S., BAZIE P., AFOUDA A., RODE M. 2016. Multi-site validation of the SWAT model on the Bani catchment: Model performance and predictive uncertainty. Water. Vol. 8. Iss. 5, 178. DOI 10.3390/w8050178.
  • BULCOCK L.M., JEWITT G.P.W. 2013. Key physical characteristics used to assess water harvesting suitability. Physics and Chemistry of the Earth. Vol. 66 p. 89–100. DOI 10.1016/ j.pce.2013.09.005.
  • CARTER M.R. 1993. Soil sampling and methods of analysis. Boca Raton. Lewis Publishers. ISBN 9780873718615 pp. 823.
  • CRITCHLEY W., SIEGERT K., CHAPMAN C. 1991. Water harvesting. A manual guide for the design and construction of water harvesting schemes for plant production [online]. Rome. FAO. [Access 20.09.2019]. Available at: www.fao.org/docrep/u3160e/u3160e07.htm
  • DEWITTE O., JONES A., SPAARGAREN O., BREUNING-MADSEN H., BROSSARD M., DAMPHA A., …, ZOUGMORE R. 2013. Harmonization of the soil map of Africa at the continental scale. Geoderma. Vol. 211–212 p. 138–153. DOI 10.1016/ j.geoderma.2013.07.007.
  • DROBNE S., LISEC A. 2009. Multi-attribute decision analysis in GIS: Weighted linear combination and ordered weighted averaging. Informatica. Vol. 33. p. 459–474.
  • East Hararghe Irrigation Development Authority 2016. Participatory rural appraisal annual report of East Hararghe. [05.09.2019 Harar, Ethiopia]. [unpublished].
  • EASTMAN R.J., JIN W., KWAKU KYEM K.A., TOLEDANO J. 1995. Raster procedures for multi-criteria/ Multi-objective decisions. Photogrammetric Engineering and Remote Sensing. Vol. 61. No. 5 p. 539–547.
  • FAO 2003. Land and water digital media series, 26. Training course on RWH [CD-ROM]. Planning of water harvesting schemes, unit 22. Rome, Italy. Food and Agriculture Organization.
  • FAO 2015. Cities of despair – or opportunity? [online]. [Access 10.09.2019]. Available online: http://www.fao.org/ag/agp/greenercities/en/whyuph/
  • FRASIER G.W., MYERS L.E. 1983. Handbook of water harvesting. Washington DC. USDA, Agricultural Research Service. Handbook. No. 600 pp. 51.
  • GEBRE S.B., TENA A.,MERKEL B.J., ASSEFA M.M. 2016. Land use and land cover change impact on groundwater recharge: The Case of Lake Haramaya watershed, Ethiopia. In: Landscape dynamics, soils and hydrological processes in varied climates. Ed. M.M. Assefa, A.Wossenu. 1st ed. Switzerland. Springer International Publishing p. 93–110.
  • GUPTA H.V., SOROOSHIAN S., YAPO P.O. 1999. Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration. Journal of Hydrologic Engineering. Vol. 4. Iss. 2 p. 1093–1120. DOI 10.1061/ (ASCE)1084-0699(1999)4:2(135).
  • HOPKINS L.D. 1977. Methods for generating land suitability maps: A comparative evaluation. Journal of the American Institute of Planners. Vol. 43. Iss. 4 p. 386–400. DOI 10.5822/ 978-1-61091-491-8-30.
  • HUANG Y., CAI M. 2009. Methodologies guidelines: Vulnerability assessment of freshwater resources to environmental change. United Nations Environment Programme. Nairobi, Kenya. ISBN 978-92-807-2953-5 pp. 19.
  • KADAM A.K., KALE S.S., PANDE N.J., SANKHUA R.N., PAWAR N.J. 2012. Identifying potential rainwater harvesting sites of a semi-arid, basaltic region of western India, using SCS-CN method. Water Resource Management. Vol. 26 p. 2537–2554. DOI 10.1007/s11269-012-0031-3.
  • KAHINDA M.J., LILLIE E.S.B., TAIGBENU A.E., TAUTE M., BOROTO R.J. 2008. Developing suitability maps for rainwater harvesting in South Africa. Physics and Chemistry of the Earth, Parts A/B/C. Vol. 33. Iss. 8–13 p. 788–799. DOI 10.1006/j.pce. 2008.06.047.
  • KROIS J., SCHULTE A. 2014. GIS-based multi-criteria evaluation to identify potential sites for soil and water conservation techniques in the Ronquillo watershed, northern Peru. Applied Geography. Vol. 51. p. 131–142. DOI 10.1016/ j.apgeog.2014.04.006.
  • KUMAR M.G., AGARWAL A.K., BALI R. 2008. Delineation of po-tential sites for water harvesting structures using remote sensing and GIS. Journal of Indian Society Remote Sensing. Vol. 36 p. 323–334. DOI 10.1007/s12524-008-0033-z.
  • MA Z., KANG S., ZHANG L., TONG L., SU X. 2008. Analysis of impacts of climate variability and human activity on streamflow for a river basin in arid region of northwest China. Journal of Hydrology. Vol. 352 p. 239–249. DOI 10.1016/ j.hydrol.2007.12.022.
  • MAHMOUD S.H. 2014. Delineation of potential sites for groundwater recharge using a GIS-based decision support system. Environmental Earth Sciences. Vol. 72. Iss. 9 p. 3429–3442. DOI 10.1007/s12665-014-3249-y.
  • MAHMOUD S.H., ALAZBA A.A. 2014. The potential of in situ rainwater harvesting in arid regions: Developing a methodology to identify suitable areas using GIS based decision support system. Arabian Journal of Geosciences. Vol. 1 p. 1–13. DOI 10.1007/s12517-014-1535-3.
  • MALCZEWSKI J. 2000. On the use of weighted linear combination method in GIS: Common and best practice approaches. Transactions in GIS. Vol. 4. Iss. 1 p. 5–22.
  • MATI B., DE BOCK T., MALESU M., KHAKA E., ODUOR A., NYA-BENGE M., ODUOR V. 2006. Mapping the potential of rainwater harvesting technologies in Africa: A GIS overview on development domains for the continent and ten selected countries. United Nations Environmental Programme, World Agroforestry Centre. Nairobi, Kenya. Technical Manual. No. 6. ISBN 92 9059 2117 pp. 116.
  • MBILINYI B.P., TUMBO S.D., MAHOO H., MKIRAMWINYI F.O. 2007. GIS-based decision support system for identifying potential sites for rainwater harvesting. Physics and Chemistry of the Earth. Parts A/B/C. Vol. 32 p. 1074–1081. DOI 10.1016/jpc.2007.07.014.
  • MCCUEN R.H. 2004. Hydrologic analyses and design. 3rd ed. Englewood Cliffs. New Jersey. ISBN 978-0131424241 pp. 888.
  • MONTEITH J.L., MOSS C.J. 1977. Climate and the efficiency of crop production in Britain [online]. Philosophical Transactions of the Royal Society B: Biological Sciences. Vol. 281 p. 277–294. [Access 15.10.2020]. Available at: https://jstor.org/stable/2417832
  • MUTENYO I., NEJADHASHEMI A.P., WOZNICKI A., GIRI S. 2013. Evaluation of SWAT performance on mountainous watershed in tropical Africa. Hydrology: Current Research. Vol. 4. DOI 10.4172/2157.S14.001.
  • NASH J.E., SUTCLIFFE J.V. 1970. River flow forecasting through conceptual models part I – A discussion of principles. Journal of Hydrology. Vol. 10. Iss. 3 p. 282–290. DOI 10.1016/0022-1694(70)90255-6.
  • NEITSCH S.L., ARNOLD J.G., KINIRY J.R., WILLIAMS J.R. 2011. Soil and water assessment tool. Theoretical documentation version 2009 [online]. Texas Water Resources Institute Technical Report. No. 40. Texas A&M University system. Texas, USA. [Access 15.10.2020]. Available at: https://swat.tamu.edu/media/99192/swat2009-theory.pdf
  • PRINZ D., OWEIS T., OBERLE A. 1998. Water harvesting for dry land agriculture developing a methodology based on remote sensing and GIS. Proceedings of the 13th International Congress Agricultural Engineering. 02–06.02.1998 Rabat, Mo-rocco p. 1–12.
  • RAMAKRISHNAN D., BANDYOPADHYAY A., KUSUMA.K.N. 2009. SCS-CN and GIS-based approach for identifying potential water harvesting sites in the Kali Watershed, Mahi River Basin, India. Journal of Earth System Science. Vol. 118. No. 4 p. 355–368. DOI 10.1007/s12040-009-0034-5.
  • ROCKSTRÖM J. 2000. Water resources management in smallholder farms in eastern and southern Africa: An overview. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere. Vol. 25. No. 3 p. 275–283. DOI 10.1016/S1464-1909(00)00015-0.
  • SCS 1972. National engineering handbook. Section 4: Hydrology. USDA, Washington DC. Soil Conservation Service pp. 126.
  • SUBRAMANYA K. 1998. Engineering hydrology. 3rd ed. Tata McGraw Hill, New Delhi, India. ISBN 9780070648555 pp. 445.
  • WINCHELL M., SRINIVASAN R., DI LUZIO J.M. 2009. Arc SWAT 2.3.4 Interface for SWAT2005: User’s guide manual. Black Land Research Center, Texas Agricultural Experiment Station, Texas, USA pp. 484.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-efcd6db5-35c2-403c-b7ae-d9799f1b1a01
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.