PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Molecular dynamic simulations study of 2-((2- (decyloxy)ethyl)amino)lauric acid adsorption on the α-quartz (1 0 1) surface

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Adsorption mechanism of a novel amphoteric collector 2-((2-(decyloxy)ethyl)amino)lauric acid (CH3(CH2)9CH(NH(CH2)3-O-(CH2)9CH3)COOH, LDEA) on the α-quartz (1 0 1) surface has been investigated through molecular dynamic (MD) simulation calculations at a molecular level. The adsorption process showed that the LDEA collector could be adsorbed onto α-quartz’s (1 0 1) surface as the H atom in the polar carboxyl and amino functional group of the collector moved closer to the O atom of quartz (1 0 1) surface. The interaction energies of the collector LDEA molecule and its ionic derivative species on α-quartz surfaces in vacuum and aqueous solutions are in the order of pH 4 < pH 12 < in vacuum < pH 10 < pH 6, which demonstrating that the α-quartz (1 0 1) surface could absorb the collector LDEA in the forms of electrostatic and hydrogen bonding interactions. It also reveals that the optimal pulp pH range for LDEA adsorption on α-quartz’s surface is between neutral and weak alkali environment (pH 6 - 10). The trend obtained from molecular modeling has been validated by microflotation studies on quartz at different pHs.
Rocznik
Strony
1209--1216
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr., wz.
Twórcy
autor
  • College of Resource and Civil Engineering, Northeastern University, Shenyang 110819, PR China
  • Department of Chemical and Materials Engineering, University of Alberta, Edmonton T6G 1H9, Canada
autor
  • College of Resource and Civil Engineering, Northeastern University, Shenyang 110819, PR China
autor
  • Beijing General Research Institute of Mining and Metallurgy, Beijing100044, PR China
autor
  • College of Resource and Civil Engineering, Northeastern University, Shenyang 110819, PR China
autor
  • College of Resource and Civil Engineering, Northeastern University, Shenyang 110819, PR China
Bibliografia
  • ARAUJO, A.C., VIANA, P.R.M., PERES, A.E.C., 2005. Reagents in iron ores flotation. Minerals Engineering, 18(2), 219-224.
  • DOS SANTOS, I.D., OLIVEIRA, J.F., 2007. Utilization of humic acid as a depressant for hematite in the reverse flotation of iron ore. Minerals Engineering, 20(10), 1003-1007.
  • HIDALGO, P., GUTZ, I.G.R., 2001. Determination of low concentrations of the flotation reagent ethyl xanthate by sampled DC polarography and flow injection with amperometric detection. Talanta, 54(2), 403-409.
  • HUANG, Z., ZHONG, H., WANG, S., XIA, L., ZOU, W., LIU, G., 2014. Investigations on reverse cationic flotation of iron ore by using a Gemini surfactant: Ethane-1,2-bis(dimethyl-dodecyl ammonium bromide). Chem Eng J, 257, 218-228.
  • LIMA, N.P., VALADÃO, G.E.S., PERES, A.E.C., 2013. Effect of amine and starch dosages on the reverse cationic flotation of an iron ore. Minerals Engineering, 45, 180-184.
  • LIU, A., FAN, J.-C., FAN, M.-Q., 2015a. Quantum chemical calculations and molecular dynamics simulations of amine collector adsorption on quartz (0 0 1) surface in the aqueous solution. International Journal of Mineral Processing, 134, 1-10.
  • LIU, W.G., WANG, X.Y., LIU, W.B., WEI, D.Z., WANG, B.Y., SHEN, Y.B., 2015b. Synergistic Adsorption of N-dodecyl Ethylenediamine Along with Polyethylene Glycol (PEG) on Quartz. Int J Electrochem Sc, 10(11), 9310-9323.
  • LÓPEZ-VALDIVIESO, A., ROBLEDO-CABRERA, A., URIBE-SALAS, A., 2000. Flotation of celestite with the anionic collector sodium dodecyl sulfate. Effect of carbonate ions. International Journal of Mineral Processing, 60(2), 79-90.
  • LUO, B., ZHU, Y., SUN, C., LI, Y., HAN, Y., 2015. Flotation and adsorption of a new collector α Bromodecanoic acid on quartz surface. Minerals Engineering, 77, 86-92.
  • LUO, B., ZHU, Y., SUN, C., LI, Y., HAN, Y., 2018. The flotation behavior and adsorption mechanisms of 2-((2-(decyloxy)ethyl)amino)lauric acid on quartz surface. Minerals Engineering, 117, 121-126.
  • LUO, X.-M., YIN, W.-Z., WANG, Y.-F., SUN, C.-Y., MA, Y.-Q., LIU, J., 2016. Effect and mechanism of dolomite with different size fractions on hematite flotation using sodium oleate as collector. Journal of Central South University, 23(3), 529-534.
  • NI, X., LIU, Q., 2012. The adsorption and configuration of octyl hydroxamic acid on pyrochlore and calcite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 411, 80-86.
  • PRADIP, RAI, B., 2002. Design of tailor-made surfactants for industrial applications using a molecular modelling approach. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 205(1), 139-148.
  • PRADIP, RAI, B., 2003. Molecular modeling and rational design of flotation reagents. International Journal of Mineral Processing, 72(1), 95-110.
  • PUGH, R., STENIUS, P., 1985. Solution Chemistry Studies and Flotation Behavior of Apatite, Calcite and Fluorite Minerals with Sodium Oleate Collector. International Journal of Mineral Processing, 15(3), 193-218.
  • RATH, S.S., SINHA, N., SAHOO, H., DAS, B., MISHRA, B.K., 2014. Molecular modeling studies of oleate adsorption on iron oxides. Applied Surface Science, 295, 115-122.
  • RAI, B., SATHISH, P., TANWAR, J., PRADIP, MOON, K.S., FUERSTENAU, D.W., 2011. A molecular dynamics study of the interaction of oleate and dodecylammonium chloride surfactants with complex aluminosilicate minerals. Journal of Colloid and Interface Science, 362(2), 510-516.
  • SHIBATA, J., FUERSTENAU, D.W., 2003. Flocculation and flotation characteristics of fine hematite with sodium oleate. International Journal of Mineral Processing, 72(1-4), 25-32.
  • WANG, L., SUN, W., HU, Y.-H., XU, L.-H., 2014. Adsorption mechanism of mixed anionic/cationic collectors in Muscovite – Quartz flotation system. Minerals Engineering, 64, 44-50.
  • WANG, T.X., ZHU, Y.M., GUI, X.H., 2016. Flotation of a new chelate collector on fine refractory iron ore-containing carbonate. J Cent South Univ, 23(5), 1058-1065.
  • WANG, Y., REN, J., 2005. The flotation of quartz from iron minerals with a combined quaternary ammonium salt. International Journal of Mineral Processing, 77(2), 116-122.
  • WENG, X., MEI, G., ZHAO, T., ZHU, Y., 2013. Utilization of novel ester-containing quaternary ammonium surfactant as cationic collector for iron ore flotation. Separation and Purification Technology, 103, 187-194.
  • XIA, L., ZHONG, H., LIU, G., HUANG, Z., CHANG, Q., 2009. Flotation separation of the aluminosilicates from diasporę by a Gemini cationic collector. International Journal of Mineral Processing, 92(1), 74-83.
  • ZHENG, J.Z., BEHRENS, S.H., BORKOVEC, M., POWERS, S.E., 2001. Predicting the wettability of quartz surfaces exposed to dense nonaqueous phase liquids. Environ Sci Technol, 35(11), 2207-2213.
  • ZHU, Y., LUO, B., SUN, C., LI, Y., HAN, Y., 2015. Influence of bromine modification on collecting property of lauric acid. Minerals Engineering, 79, 24-30.
  • ZHU, Y., LUO, B., SUN, C., LIU, J., SUN, H., LI, Y., HAN, Y., 2016. Density functional theory study of α-Bromolauric acid adsorption on the α-quartz (101) surface. Minerals Engineering, 92, 72-77.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-efc7402b-b94b-4096-92f2-5e025899dab6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.