Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this work, a new, simple method is presented, which enables identification of material properties of solids basing on the digital image correlation (DIC) measurements. It may be considered as a simplified alternative of low computational complexity for the well-known finite element model updating (FEMU) method and virtual fields method (VFM). The idea of the introduced sub-global equilibrium (SGE) method is to utilize the fundamental concept and definition of internal forces and its equilibrium with appropriate set of external forces. This makes the method universal for the use in the description of a great variety of continua. The objective function is the measure of imbalance, namely the sum of squares of residua of equilibrium equations of external forces and internal forces determined for finite-sized part of the sample. It is then minimized with the use of the Nelder–Mead downhill simplex algorithm. The efficiency of the proposed SGE method is shown for two types of materials: 310 S austenitic steel and carbon-fiber-reinforced polymer (CFRP). The proposed method was also verified based on FE analysis showing error estimation.
Czasopismo
Rocznik
Tom
Strony
art. no. e169, 2024
Opis fizyczny
Bibliogr. 35 poz., fot., rys., wykr.
Twórcy
autor
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
autor
- Division of Structural Mechanics and Material Mechanics, Faculty of Civil Engineering, Cracow University of Technology, Kraków, Poland
autor
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
autor
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
Bibliografia
- 1. Zheng LH, Wang ZJ, Wan M, Meng B. Yield surface characterization for light weight alloy sheets via an improved combined shear-tension experimental method. Arch Civil Mech Eng. 2022;22:96.
- 2. Chu TC, Ranson WF, Sutton MA. Applications of digital-image-correlation techniques to experimental mechanics. Exp Mech.1985;25:232–244.
- 3. Wykes C. Use of electronic speckle pattern interferometry (ESPI) in the measurement of static and dynamic surface displacements. Opt Eng. 1982;21(3):400–406.
- 4. He Z, Zhang K, Lin Y, Yuan S. An accurate determination method for constitutive model of anisotropic tubular materials with DIC-based controlled biaxial tensile test. Int J Mech Sci. 2020;181:105715.
- 5. Martins JMP, Andrade-Campos A, Thuillier S. Comparison of inverse identification strategies for constitutive mechanical models using full-field measurements. Int J Mech Sci. 2018;145:330–345.
- 6. He T, Liu L, Makeev A. Uncertainty analysis in composite material properties characterization using digital image correlation and finite element model updating. Compos Struct. 2018;184:337–351.
- 7. Kavanagh KT, Clough RW. Finite element applications in the characterization of elastic solids. Int J Solids Struct. 1971;7(1):11–23.
- 8. Gajewski T, Garbowski T. Calibration of concrete parameters based on digital image correlation and inverse analysis. Arch Civil Mech Eng. 2014;14(1):170–180.
- 9. Gerbig D, Bower A, Savic V, Hector LG. Coupling digital image correlation and finite element analysis to determine constitutive parameters in necking tensile specimens. Int J Solids Struct. 2016;97–98:496–509.
- 10. Musial S, Nowak M, Maj M. Stress field determination basedon digital image correlation results. Arch Civil Mech Eng.2019;19(4):1183–1193.
- 11. Claire D, Hild F. A finite element formulation to identify damage fields: the equilibrium gap method. Int J Numer Meth Eng. 2004;61:189–208.
- 12. Ladeveze P, Leguillon D. Error estimate procedure in the finite element method and applications. SIAM J Numer Anal. 1983;20(3):485–509.
- 13. Roux S, Hild F. Digital image mechanical identification (DIMI).Exp Mech. 2008;48:495–508.
- 14. Gogu C, Yin W, Haftka R, Ifju P, Molimard J, Le Riche R, Vautrin A. Bayesian identification of elastic constants in multi-directional laminate from Moiré interferometry displacement fields. Exp Mech. 2013;53:635–648.
- 15. Grédiac M, Pierron F, Avril S, Toussaint E. The virtual fields method for extracting constitutive parameters from full-field measurements: a review. Strain. 2006;42(4):233–253.
- 16. Kim Ch, Lee MG. Finite element-based virtual fields method with pseudo-real deformation fields for identifying constitutive parameters. Int J Solids Struct. 2021;233: 111204.
- 17. Marek A, Davis FM, Pierron F. Sensitivity-based virtual fields for the non-linear virtual fields method. Comput Mech. 2017;60:409–431.
- 18. Kim Ch, Kim JH, Lee MG. A virtual fields method for identifying anisotropic elastic constants of fiber reinforced composites using a single tension test: Theory and validation. Compos B Eng. 2020;200: 108338.
- 19. Jiang H, Lei Z, Bai R, Wu W, Liu D, Guo Z, Yan Ch, Dong H, Li M. Identifying elasto-plastic damage coupling model of laser-welded aluminum alloy by virtual field method and digital image correlation. Opt Laser Technol. 2020;129: 106268.
- 20. Fu J, Yang Z, Nie X, Tang Y, Cai Y, Yin W, Qi L. A VFM-based identification method for the dynamic anisotropic plasticity of sheet metals. Int J Mech Sci. 2022;230: 107550.
- 21. Chalal H, Avril S, Pierron F, Meraghni F. Experimental identification of a nonlinear model for composites using the grid technique coupled to the virtual fields method. Composites A Appl Sci Manuf. 2006;37(2):315–325.
- 22. Avril S, Gre’diac M, Pierron F. Sensitivity of the virtual fields method to noisy data. Comput Mech. 2004;34:439–452.
- 23. Roux S, Hild F. Optimal procedure for the identification of constitutive parameters from experimentally measured displacement fields. Int J Solids Struct. 2020;184:14–23.
- 24. Avril S, Pierron F. General framework for the identification of constitutive parameters from full-field measurements in linear elasticity. Int J Solids Struct. 2007;44(14):4978–5002.
- 25. Mei Y, Deng J, Guo X, Goenezen S, Avril S. Introducing regularization into the virtual fields method (VFM) to identify non-homogeneous elastic property distributions. Comput Mech. 2021;67:1581–1599.
- 26. Voigt W. Ueber die beziehung zwischen den beiden elasticitäts-constanten isotroper körper. Ann Phys. 1889;274(12):573–587.
- 27. Reuss A. Berechnung der flieågrenze von mischkristallen aufgrund der plastizitätsbedingung für einkristalle. Zeitschr Ang Math Mech. 1929;9(1):49–58.
- 28. Hollister SJ, Kikuchi N. A comparison of homogenization and standard mechanics analyses for periodic porous composites. Comput Mech. 1992;10:73–95.
- 29. Gan H, Orozco CE, Herakovich CT. A strain-compatible method for micromechanical analysis of multi-phase composites. Int J Solids Struct. 2000;37(37):5097–5122.
- 30. Kowalczyk-Gajewska K, Ostrowska-Maciejewska J. Review on the spectral decomposition of Hooke’s tensor for all symmetry groups of linear elastic material. Eng Trans. 2009;57(3–4):145–183.
- 31. Nowak M, Maj M. Determination of coupled mechanical and thermal fields using 2d digital image correlation and infrared thermography: Numerical procedures and results. Arch Civil Mech Eng. 2018;18(2):630–644.
- 32. Gao F, Han L. Implementing the Nelder–Mead simplex algorithm with adaptive parameters. Comput Optim Appl.2012;51(1):259–277.
- 33. Nelder JA, Mead R. A simplex method for function minimization. Comput J. 1965;7:308–313.
- 34. Jordan B, Grolleau V, Mohr D. Using surround dic to extract true stress-strain curve from uniaxial tension experiments. Int J Solids Struct. 2023;268: 112171.
- 35. Stier B, Simon JW, Reese S. Comparing experimental results to a numerical meso-scale approach for woven fiber reinforced plastics. Compos Struct. 2015;122:553–60.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-efc0f96d-f3b3-4349-8bc9-c67d1794d306
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.