PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Półciągła kofermentacja osadów ściekowych i odpadów tłuszczowych pochodzenia roślinnego

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Semi-continuous Anaerobic Co-digestion of Mixed Sewage Sludge and Waste Fats of Vegetable Origin
Języki publikacji
PL
Abstrakty
EN
Anaerobic digestion (AD) is the most often applied technique for sewage sludge stabilization at medium and large wastewater treatment plants. Nonetheless, the application of AD to sewage sludge stabilization is often limited by long retention time and low VS (volatile solid) removal. For this reason in recent years a number of studies have been focused on optimize anaerobic digestion processes. One of the most interesting options for improving anaerobic digestion yields is co-digestion, namely simultaneous decomposition of a homogenous mixture of at least two biodegradable wastes. Fat-rich materials are attractive substrate for AD due to the high organic matter content of waste and high energetic potential. It is estimated that about 1,014 dm3, methane at STP (standard temperature and pressure) can by produced from 1 g VS lipids, while only 0,415, 0,496 dm3 can be produced respectively from 1 g VS carbohydrate and protein. However, due to inhibitory effect of intermediate compounds (LCFAs – long chain fatty acids) and operational problems, such as: hindrance, sedimentation clogging, scum formation, and flotation of biomass, separate AD of this waste ended with failure. The aim of the current study was to investigate how the co-digestion of fats of vegetable origin (FV) and mixed sewage sludge affected the performance of the anaerobic digestion (AD) process. The process was carried out at mesophilic conditions (37°C) in continuous stirred-tank reactor (CSTR) with working liquid volume equal to 6,5 dm3. The reactors were operated in draw-and fill mode (on a daily basis). The digestion was examined in semi-continuous mode at sludge retention time of 10 days and the organic loading rate maintained in the range 2,24–3,02 g/dm3 d. During the start-up period the digester was fed only sewage sludge. Co-digestion process was initiated after achievement of stable working parameters of bioreactor for sewage sludge digestion. Addition of fat in the feedstock was gradually increased up to 35%. Anaerobic process state indicators such as: biogas production, biogas composition, pH, alkalinity and volatile fatty acids (VFA) were used to monitor a digestion. Furthermore, the LCFAs concentrations were measured in a feed and digested sludge. The results showed that use of FV as a co-substrate adversely affects the efficiency of the process. Comparing digestion of MSS alone with co-digestion of wastes, it was shown that co-digestion resulted in lower biogas production and VS removal. Biogas yields for co-digestion mixtures were between 0,16 and0,32 dm3/g VS added, while volatile solid (VS) removal ranged from 36,75 to 42,65%.However average biogas yield and VS degradation degree observed during fermentation of the MSS(mixed sewage sludge) alone were 0,33 dm3/g VS added and 44%, respectively. Only for biogas composition noted the positive effect of mixed sewage sludge co-fermentation with FV. The study showed that the concentration of ammonia generated in this experiment did not inhibit anaerobic digestion. It was found that oleic acid, which is one of the most toxic long chain fatty acids, was present at concentrations (reached a maximum value of 34,38 mg/g TS) within the ranges for which inhibition of methanogenesis has been reported. This suggests that the low efficiency of the process was probably caused a high concentration of oleic acid.
Rocznik
Strony
2108--2125
Opis fizyczny
Bibliogr. 38 poz., tab., rys.
Twórcy
autor
  • Politechnika Częstochowska
autor
  • Politechnika Częstochowska
autor
  • Politechnika Częstochowska
autor
  • Politechnika Częstochowska
Bibliografia
  • 1. Angelidaki I., Sanders W.: Assessment of the anaerobic biodegradability of macropollutants. Rev Environ Sci Biotechnol. 3. 117–129 (2004).
  • 2. Bień J., Grosser A., Neczaj E., Worwąg M., Celary P.: Co-digestion of sewage sludge with different organic wastes: a review. Polish journal of environmental studies. 2. 24–30 (2010).
  • 3. Caicedo J. R., van der Steen N. P., Arce O., Gijzen H. J.: Effect of total ammonia nitrogen concentration and pH on growth rates of duckweed (Spirodela polyrrhiza). Water Res. 34(15). 3829–3835 (2000).
  • 4. Callaghan F.J., Wase D.A.J., Thayanithy K., Foster C.F.: Continuous co-digestion of cattle slurry with fruit and vegetable wastes and chicken manure. Biomass and Bioenergy. 22 (1). 71–77 (2002).
  • 5. Casado A.G., Alonso HernandezE.J., Espinosa P., Vilchez J.L.: Determination of total fatty acids (C8-C22) in sludges by gas chromatography-mass spectrometry. Journal of Chromatography A.826. 49–56 (1998).
  • 6. Chen Y., Cheng J.J., Creamer K.S.: Inhibition of Anaerobic Digestion Process: A Review. Bioresource Technology. 99. 4044–4064 (2008).
  • 7. Cho H.S., Moon H.S., Lim J.Y., Kim J.Y.: Effect of long chain fatty acids removal as a pretreatment on the anaerobic digestion of food waste. Journal of Material Cycles and Waste Management. 15(1). 82–89 (2013).
  • 8. Cirne D.G., Paloumet X., Björnsson L.,Alves M.M., Mattiasson B.: Anaerobic digestion of lipid-rich waste – Effects of lipid concentration. Renewable Energy. 32. 965–975 (2007).
  • 9. Davidsson A., Lovstedt C., Jansen J.L., Gruvberger C., Aspegren H.: Co-digestion of grease trap sludge and sewage sludge. Waste Manage. 28 (6). 986–992 (2008).
  • 10. De Baere L.A., Devockt M., Van Assche P., Verstraete W.O.: Influence of high NaCl and NH4Cl salt levels on the anaerobic digestion process. Water Research.18. 543–548 (1984).
  • 11. Ferenc Z., Pikoń K.: Przegląd rodzajów i ilości odpadów tłuszczowych i olejowych w Polsce. Archives of Waste Management and Environmental Protection. 2. 69–80 (2005).
  • 12. Fernández A., Sánchez A., Font X.: Anaerobic co-digestion of a simulated organic fraction of municipal solid wastes and fats of animal and vegetable origin. Biochemical Engineering Journal. 26. 22–28 (2005).
  • 13. Fijałkowski K., Grosser A.: Optimisation of extraction of LCFA’s in sewage sludge and their mixtures with animal grease wastes for co-fermentation. Book of Abstracts of the 4th international conference on Advances in sustainable sewage sludge management, Szczyrk, Poland, 3–5 December 2012, 27.
  • 14. Hartmann, H., Ahring, B.K.: Anaerobic digestion of the organic fraction of municipal solid waste: influence of co-digestion with manure. Water Res.. 39. 1543–1552 (2005).
  • 15. Kabouris J.C., Tezel U., Pavlostathis S. G., Engelmann M., Dulaney J., Gillette R.A., Todd A.C.: Methane recovery from the anaerobic co-digestion of municipal sludge and FOG, Bioresource Technology, 100, 3701–3705 (2009).
  • 16. Krzemieniewski M., Zieliński M., Dębowski M.: Wpływ termicznego przetworzenia i enzymatycznej hydrolizy biomasy sorgo (Sorghum bicolor) na efektywność wytwarzania biogazu w procesie fermentacji metanowej, Rocznik Ochrona Środowiska (Annual Set The Environment Protection), 13. 1081–1092 (2011).
  • 17. Lalman J.A., Bagley D.M.: Anaerobic degradation and methanogenic inhibitory effects of oleic and stearic acids. Water Research. 35. 2975–2983 (2001).
  • 18. Lalman J.A., Bagley D.M.: Anaerobic degradation and inhibitory effects of linoleic acid. Water Research. 34, 4220–4228 (2000).
  • 19. Lossie U., Pütz P.: Targeted control of biogas plants with the help of FOS/TAC. Practice Report Hach-Lange. Available from: . 2008.
  • 20. Luostarinen S., Luste S., Sillanpää M.: Increased biogas production at wastewater treatment plants through co-digestion of sewage sludge with grease trap sludge from a meat processing plant. Bioresour. Technol.. 100. 79–85 (2009).
  • 21. Malej J.: Wybrane problemy przeróbki osadów ściekowych. Rocznik Ochrona Środowiska (Annual Set The Environment Protection), 2. 39–69 (2000).
  • 22. Murto M., L. Björnsson, Mattiasson B.: Impact of food industrial waste on anaerobic co-digestion of sewage sludge and pig manure. J. Environ. Manage. 70. 101–107 (2004).
  • 23. Neczaj E., Bień J., Grosser A., Worwąg M., Kacprzak M.: Anaerobic treatment of sewage sludge and grease traps sludge in continuous co-digestion. Global NEST Journal. 14. 2,. 141–148 (2012).
  • 24. Neczaj E., Grosser A.: Najnowsze trendy w fermentacji metanowej osadów ściekowych – artykuł przeglądowy. III Ogólnopolska Konferencja Szkoleniowa – Metody zagospodarowania osadów ściekowych. 13–14 lutego Chorzów. 97–109 (2012).
  • 25. Oh S., Martin A.: Long chain fatty acids degradation in anaerobic digester: thermodynamic equilibrium consideration. Process Biochem. 45–345 (2010).
  • 26. Pereira, M.A., Pires, O.C., Mota, M., Alves, M.M.: Anaerobic biodegradation of oleic and palmitic acids: evidence of mass transfer limitation caused by long chain fatty acid accumulation onto anaerobic sludge. Biotechnology and Bioengineering. 92 (1). 15–23 (2005).
  • 27. Poggi-Varaldo HM, Tingley J, Oleszkiewicz J.: Inhibition of growth and acetate uptake by ammonia in batch anaerobic digestion. J Chem Tech Biotechnol.52.135–43 (1991).
  • 28. Riau V., De la Rubi, M.A., Perez M.: Temperature-phased anaerobic digestion(TPAD) to obtain class Abiosolids: a semi-continuous study. Bioresource Technol. 101 (8). 2706–2712 (2010).
  • 29. Sadecka Z.: Podstawy biologicznego oczyszczania ścieków. Wydawnictwo Seidel-Przywecki. Sp. z o.o. WydaniePierwsze. 2010.
  • 30. Salminen E., Rintala J.: Anaerobic digestion of organic solid poultry slaughterhouse waste – a review. Bioresource Technology. 83. 13–26 (2002).
  • 31. Salminen, E., Rintala, J., Lokshina, L.Ya., Vavilin, V.A.: Anaerobic batch degradation of solid poultry slaughterhouse waste. Water Science and Technology. 41 (3), 33–41 (2000).
  • 32. Shin, H.-S., Kim, S.-H., Lee, C.-Y., Nam, S.-Y.: Inhibitory effects of long-chain fatty acids on VFA degradation and beta-oxidation. Water Science andTechnology. 47 (10). 139–146 (2003).
  • 33. Wan C., Zhou Q., Fu G., Li Y.: Semi-continuous anaerobic co-digestion of thickened waste activated sludge and fat, oil and grease. Waste Management. 31. 752–1758 (2011).
  • 34. Worwąg M., Neczaj E., Grosser A., Krzemińska D.: Methane production from fat-rich materials, Civil and Environmental Engineering Reports, 6. 147–162 (2011).
  • 35. Zawieja I., Barański M., Małkowski M.: Pozyskiwanie biogazu w procesie stabilizacji beztlenowej termicznie modyfikowanych osadów ściekowych. Inżynieria i Ochrona Środowiska. 13 (3). 185–196 (2010).
  • 36. Zawieja I., Wolny L., Wolski P.: Influence of excessive sludge conditioning on the efficiency of anaerobic stabilization process and biogas generation. Desalination. 222. 374–381 (2008).
  • 37. Zawieja I., Wolski P., Wolny L.: Wpływ chemicznego kondycjonowania na parametry fizyczno-chemiczne przefermentowanych osadów ściekowych. Inżynieria i Ochrona Środowiska. 11 (3). 387–396 (2008).
  • 38. Zieliński M.; Dębowski M.; Krzemieniewski M.: Wpływ sposobu wstępnego preparowania odpadów poubojowych na ilość i skład powstającego biogazu w warunkach fermentacji termofilowej. Rocznik Ochrona Środowiska (Annual Set The Environment Protection), 12. 895–907 (2010).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-efbb58e9-5ece-4b0c-beb9-20c42d7c1c9e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.