Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article presents an identification method of the model of the ball-and-race coal mill motor power signal with the use of machine learning techniques. The stages of preparing training data for model parameters identification purposes are described, as well as these aimed at verifying the quality of the evaluated model. In order to meet the tasks of machine learning, additive regression model was applied. Identification of the additive model parameters was performed on the basis of iterative backfitting algorithm combined with nonparametric estimation techniques. The proposed models have predictive nature and are aimed at simulation of the motor power signal of a coal mill during its regular operation, startup and shutdown. A comparative analysis has been performed of the models structured differently in terms of identification quality and sensitivity to the existence of an exemplary disturbance in the form of overhangs in the coal bunker. Tests carried out on the basis of real measuring data registered in the Polish power unit with a capacity of 200 MW confirm the effectiveness of the method.
Rocznik
Tom
Strony
art. no. e135842
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
- Warsaw University of Technology, Institute of Automatic Control and Robotics, ul. św. Andrzeja Boboli 8, 02-525 Warsaw, Poland
autor
- Institute of Power Systems Automation, u. Wystawowa 113, 51-618 Wrocław, Poland
Bibliografia
- [1] W. Wójcik, “Application of fibre-optic flame monitoring systems to diagnostics of combustion process in power boilers”, Bull. Pol. Ac.: Tech. 56(4), 177–196 (2008).
- [2] Sprawozdanie z działalności Prezesa Urzędu Regulacji Energetyki w 2017 r. [Online]. https://www.ure.gov.pl
- [3] W. Fennig, M. Kielian, M. Lipinski, A. Bielaczyc, M. Brzozowski, S. Lasota, and P. Sarnecki, “Układ do wykrywania i ostrzegania przed zakłóceniami w swobodnym spływie strumienia paliwa stałego w przykotłowym zasobniku węgla i jego praktyczne zastosowanie na obiekcie energetycznym”, Energetyka 12, 757–760 (2014) [in Polish].
- [4] M. Lipinski, “Detection and prevention systems of mills assembly emergency states”, in Advanced Solutions in Diagnostics and Fault Tolerant Control, DPS 2017; Advances in Intelligent Systems and Computing, Eds. J. Kościelny, M. Syfert, A. Sztyber, Springer, Cham, 2018.
- [5] A. Cortinovis, M. Mercangoz, T. Mathur, J. Poland, and M. Blaumann, “Nonlinear coal mill modeling and its application to model predictive control”, Control Eng. Practice 21(3), 308–320 (2013).
- [6] Y. Gao, D. Zeng, and J. Liu, “Modeling of a medium speed coal mill”, Powder Technol. 17(5), 1–27 (2017).
- [7] M. Mercangoez and J. Poland, “Coal mill modeling for monitoring and control”, IFAC Proc. Volumes, 44(1), 13163–13166 (2011).
- [8] N.W. Rees and G.Q. Fan, “Modeling and control of pulverized fuel coal mills”, in Thermal Power Plant Simulation and Control, Ed. D. Flynn, IET, UK, 2003.
- [9] G. Zhou, J. Si, and C.W. Taft, “Modeling and simulation of CE deep bowl pulverizer”, IEEE Trans. Energy Convers. 15(3), 312–322 (2000).
- [10] P. Niemczyk, J.D. Bendtsen, T.S. Pedersen, P. Andersen, and A.P. Ravn, “Derivation and validation of a coal mill model for control”, Control Eng. Practice 20(5), 519–530 (2012).
- [11] J.L. Wei, J.H. Wang, and Q.H. Wu, “Development of a multisegment coal mill model using an evolutionary computation technique”, IEEE Trans. Energy Convers. 22(3), 718–727 (2007).
- [12] V. Agrawal, B.K. Panigrahi, and P.M.V. Subbarao, “A unified thermo-mechanical model for coal mill operation”, Control Eng. Practice 44, 157–171 (2015).
- [13] P.F. Odgaard and B. Mataji, “Observer-based fault detection and moisture estimating in coal mills”, Control Eng. Practice 16, 909–921 (2008).
- [14] M. Krośnicki, “Current diagnosis of coal mill using evolutionary algorithm”, Warsaw University of Technology, Master thesis, 2015.
- [15] P. Pradeebha, N. Pappa, and D. Vasanthi, “Modeling and Control of Coal Mill”, IFAC Proc. Volumes 46(32), 797–802 (2013).
- [16] T. Chai, L. Zhai, and H. Yue, “Multiple models and neural networks based decoupling control of ball mill coal pulverising systems”, J. Process Control 21, 351–366 (2011).
- [17] X. Han and X. Jiang, “Fault Diagnosis of Pulverizing System Based on Fuzzy Decision-Making Fusion Method”, Fuzzy Info. Eng. 62, 1045–1056 (2009).
- [18] Y.G. Zhang, Q.H. Wu, J. Wang, and X.X. Zhou, “Coal mill modeling by machine learning based on onsite measurements”, IEEE Trans. Energy Convers. 17, 549–55 (2002).
- [19] T. Hastie and R. Tibshirani, “Generalized additive models”, CRC Monographs on Statistics and Applied Probability, Chapman & Hall/, 1990.
- [20] Z.M. Łabęda-Grudziak, “Smoothing parameters selection in the additive regression models approach for the fault detection scheme”, Pomiary Automatyka Kontrola 57(2), 197–200 (2010).
- [21] Z.M. Łabęda-Grudziak, “Diagnostic technique based on additive models in the tasks of the ongoing exploitation of gas network”, Eksploatacja i Niezawodność – Maintenance and Reliability 18(1), 50–56 (2016).
- [22] Z.M. Łabęda-Grudziak, “Identification of dynamic system additive models by KDD methods”, Pomiary Automatyka Kontrola 57(3), 249–252 (2010).
- [23] R.K. Pearson, Exploratory Data Analysis Using, R, Chapman & Hall, 2018.
- [24] V. Agrawal, B.K. Panigrahi, and P.M.V. Subbarao, “Review of control and fault diagnosis methods applied to coal mills”, J. Process Control 32, 138–153 (2015).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-efb88d4f-19ea-45ab-a8f5-35650d3189d2