Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Properties of miscanthus hydrochars obtained through wet torrefaction were studied. The process was carried out in three different temperatures – 180, 200 and 220 °C and with four different ratios of water to biomass – 3:1, 6:1, 12:1 and 16:1. The obtained solid products were characterized with respect to their fuel properties. The best results were obtained for the temperature of 220 °C and showed a noticeable improvement in fuel properties – especially grindability and lowered ash content. The influence of water to biomass ratio was not so explicit and while high ratio showed an improvement in all mentioned properties, low ratio allowed to achieve the highest energy yield. The results obtained for miscanthus wet torrefaction and the literature data for dry torrefaction were compared.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
161--167
Opis fizyczny
Bibliogr. 22 poz., tab., rys.
Twórcy
autor
- Department of Boilers, Combustion and Energy Processes, Faculty of Mechanical Engineering, Technical Univer-sity of Wroclaw, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland,
autor
- University of Twente, Drienerlolaan 5, 7522 NB Enschede, Netherlands
autor
- University of Leeds, Leeds LS2 9JT, United Kingdom
Bibliografia
- 1. Bridgeman T.G., Jones J.M., Shield I., Williams P.T. 2008. Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuel, 87(6), 844–856.
- 2. Bridgeman T.G., Jones J.M., Williams A., Waldron D.J. 2010. An investigation of the grindability of two torrefied energy corps. Fuel, 89(12), 3911–3918.
- 3. Esteban L.S., Carrasco J.E. 2006. Evaluation of different strategies for pulverization of forest biomasses. Powder Technology, 166(3), 139–151.
- 4. Funke A., Ziegler F. 2010. Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering. Biofuels, Bioproducts and Biorefining, 4(2), 160–177.
- 5. Funke A., Ziegler F. 2011. Heat of reaction measurements for hydrothermal carbonization of biomass. Bioresource Technology (102), 7595–7598.
- 6. Hardy T., Musialik-Piotrowska A., Ciołek J., Mościcki K., Kordylewski W. 2012. Negative effects of biomass combustion and co-combustion in boilers. Environment Protection Engineering, 38(1), 25–33.
- 7. IEA. 2006. World Energy Outlook 2006. Paris: International Energy Agency.
- 8. Iqbal Y., Lewandowski I. 2014. Inter-annual variation in biomass combustion quality traits over five years in fifteen Miscanthus genotypes in south Germany. Fuel Processing Technology, 121, 47–55.
- 9. Kaygusuz K. 2009. Biomass as a renewable energy source for sustainable fuels. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 31(6), 535–545.
- 10. Lynam J.G., Coronella J.C., Yan W., Reza M.T., Vasquez V.R. 2011. Acetic acid and lithium chloride effects on hydrothermal carbonization of lignocellulosic biomass. Bioresource Technology 102(10), 6192–6199.
- 11. Meehan P., Mc Donnell K., Grant J., Finnan J. 2014. The effect of harvest time and pre harvest treatment on the moisture moisture content of Miscanthus × giganteus. Europ. J. Agronomy, 56, 37–44.
- 12. Oliveira I., Blöhse D., Ramke H-G. 2013. Hydrothermal carbonization of agricultural residues. Bioresource Technology, 142, 138–146.
- 13. Pala M., Kantarli I.C., Buyukisik H.B., Yanik J. 2014. Hydrothermal carbonization and torrefaction of grape pomace: A comperative evaluation. Bioresource Technology, 161, 255–262.
- 14. Price L., Bullard M., Lyons H., Anthony S., Nixon P. 2004. Identifying the yield potential of Miscanthus x giganteus: an assessment of the spatial and temporal variability of M. x giganteus biomass productivity across England and Wales. Biomass & Bioenergy, 26(1), 3–13.
- 15. Reza M.T., Lynam J.G., Uddin M.H., Coronella C.J. 2013. Hydrothermal carbonization: Fate of inorganics. Biomass and Bioenergy, 49, 86–94.
- 16. Sevilla M., Maciá-Agulló J.A., Fuertes A.B. 2011. Hydrothermal carbonization of biomass as a route for the sequestration of CO2: Chemical and structural properties of the carbonized products. Biomass & Bioenergy, 35(7), 3152–3159.
- 17. Stemann J., Putschew A., Ziegler F. 2013. Hydrothermal carbonization: Process water characterization and effects of water recirculation. Bioresource Technology, 143, 139–146.
- 18. Świątek M. 2013. Master thesis. Toryfikacja biomasy. Wroclaw University of Technology, Chemistry Department.
- 19. van der Stelt M.J.C., Gerhauser H., Kiel J.H.A., Ptasinski K.J. 2011. Biomass upgrading by torrefaction for the production of biofuls: a review. Biomass and Bioenergy, 35(9), 3748–3762.
- 20. Xiao L-P., Shi Z-J., Xu F., Sun R-C. 2012. Hydrothermal carbonization of lignocellulosic biomass. Bioresource Technology, 118, 619–623.
- 21. Xue G., Kwapinska M., Kwapinski W., Czajka K. M., Kennedy J., Leahy J.J. 2014. Impact of torrefaction on properties of Miscantus x giganyues relevent to gasification. Fuel, 121, 189-197.
- 22. Yan W., Acharjee T.C., Coronella C.J., Vásquez, V.R.. 2009. Thermal Pretreatment of Lignocellulosic Biomass. Environmental Progress & Sustainable Energy, 28(3), 435–440.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-efb71ba6-dc89-476c-b6e4-536dfda6801d