Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
2060-T8 Al-Li alloy was friction stir butt welded under natural and water cooling conditions. Microstructures and mechanical properties of the welding joints were mainly compared and discussed. By spraying water on the top surface of stir zone, the grain size was reduced, attributing to the improvement of microhardness. The maximum tensile strength under the water cooling reached 461.1 MPa. The joint fractured at the stir zone due to the thickness reduction and the joint softening. The fracture surface consisted of many dimples with various sizes, indicating the typical ductile fracture. The strategy to apply the low heat input at the welding stage and high cooling rate at the cooling stage during FSW is necessary to obtain a high-quality FSW joint.
Wydawca
Czasopismo
Rocznik
Tom
Strony
305--312
Opis fizyczny
Bibliogr. 39 poz., fot., rys., tab.
Twórcy
autor
- Henyang Aerospace University, School of Aerospace Engineering, Shenyang 110136, P. R. China
autor
- Henyang Aerospace University, School of Aerospace Engineering, Shenyang 110136, P. R. China
autor
- Henyang Aerospace University, School of Aerospace Engineering, Shenyang 110136, P. R. China
autor
- Henyang Aerospace University, School of Aerospace Engineering, Shenyang 110136, P. R. China
Bibliografia
- [1] L. Wan, Y. X. Huang, Z. L. Lv, S. X. Lv, J. C. Feng, Mater. Des. 55, 197-203 (2014).
- [2] V. C. Sinha, S. Kundu, S. Chatterjee, Arch. Metall. Mater. 62 (3), 1819-1825 (2017).
- [3] M. Balamagendiracarman, S. Kundu, S. Chatterjee, Arch. Metall. Mater. 62 (3), 1813-1817 (2017).
- [4] Y. X. Huang, X. C. Meng, Y. M. Xie, L. Wan, Z. L. Lv, J. Cao, J. C. Feng, Compos. Part A-Appl. S. 105, 235-257 (2018).
- [5] B. Rams, A. Pietras, K. Mroczka, Arch. Metall. Mater. 59 (1), 385-392 (2014).
- [6] Y. Lin, Z. Q. Zheng, Mater. Charact. 123, 307-314 (2017).
- [7] S. Y. Niu, S. D. Ji, D. J. Yan, X. C. Meng, X. H. Xiong, J. Mater. Process. Technol. 263, 82-90 (2019).
- [8] H. J. Liu, H. J. Zhang, L. Yu, Mater. Des. 32, 1548-1553 (2011).
- [9] P. L. Niu, W. Y. Li, X. W. Yang, A. Vairis, Sci. Technol. Weld. Joi. 23, 58-62 (2018).
- [10] A. Simar, Y. Bréchet, B. D. Meester, A. Denquin, T. Pardoen, Mater. Sci. Eng. A 486, 85-95 (2008).
- [11] M. J. Starink, A. Deschamps, S. C. Wang, Scripta. Mater. 58, 377-382 (2008).
- [12] N. Xu, R. Ueji, H. Fujii, Mater. Sci. Eng. A 610 (2), 132-138 (2014).
- [13] Z. L. Liu, Y. Wang, S. D. Ji, Z. Li, Mater. Sci. Technol. 34, 209-219 (2018).
- [14] Y. Zhao, Q. Wang, H. Chen, K. Yan, Mater. Des. 56, 725-730 (2014).
- [15] Z. Zhang, B. L. Xiao, Z. Y. Ma, Mater. Sci. Eng. A 614 (37), 6-15 (2014).
- [16] B. Cai, Z. Q. Zheng, D. Q. He, S. C. Li, H. P. Li, J. Alloy Compd. 649, 19-27 (2015).
- [17] K. Krasnowski, Arch. Metall. Mater. 59 (1), 157-162 (2014).
- [18] Z. Zhang, B. L. Xiao, Z. Y. Ma, Mater. Charact. 106, 255-265 (2015).
- [19] Y. M. Yue, Q. Wen, S. D. Ji, L. Ma, Z. Lv, High Temp. Mat Pr-isr. 36 (7), 733-739 (2016).
- [20] Y. Mao, L. Ke, F. Liu, C. Huang, Y. Chen, Q. Liu, Int. J. Adv. Manuf. Tech. 81, 1419-1431 (2015).
- [21] T. L. Jolu, T. F. Morgeneyer, A. Denquin, A. F. Gourgues-Lorenzon, Int. J. Fatigue 70, 463-472 (2015).
- [22] F. F. Wang, W. Y. Li, J. Shen, S. Y. Hu, J.F.D. Santos, Mater. Des. 86, 933-940 (2015).
- [23] H. J. Liu, Y. Y. Hu, C. Dou, D. P. Sekulic, Mater. Charact. 123, 9-19 (2017).
- [24] S. D. Ji, Z. P. Yang, Q. Wen, Y. M. Yue, L. Zhang, High Temp. Mat. Pr-isr. 37 (5), 397-403 (2017).
- [25] W. F. Xu, Y. X. Luo, W. Zhang, M. W. Fu, Mater. Charact. 138, 48-55 (2018).
- [26] P. L. Niu, W. Y. Li, Z. H. Zhang, X. Yang, J. Mater. Sci. Technol. 9, 987-990 (2017).
- [27] Y. X. Huang, Z. L. Lv, L. Wan, J. Shen, J.F.D. Santos, Mater. Lett. 207, 172-175 (2017).
- [28] Y. C. Chen, H. J. Liu, J. C. Feng, Mater. Sci. Eng. A 420, 21-25 (2006).
- [29] Y. X. Huang, Y. Wang, L. Wan, H. Liu, J. Shen, J.F.D. Santos, Int. J. Adv. Manuf. Tech. 87, 1115-1123 (2016).
- [30] S. D. Ji, Y. Y. Jin, Y. M. Yue, S. S. Gao, Y. X. Huang, L. Wang, J. Mater. Sci. Technol. 29, 955-960 (2013).
- [31] H. Sidhar, N. Y. Martinez, R. S. Mishra, J. Silvanus, Mater. Des. 106, 146-152 (2016).
- [32] J. E. Gould, Z. Feng, J. Mater. Process. Manuf. Sci. 7, 185-194 (1998).
- [33] A. Sedaghati, H. Bouzary, P. I. Mech. Eng. L-J. Mater. (2017) DOI: 10.1177/1464420717726562 (in press).
- [34] C. He, Y. J. Liu, J. F. Dong, Q. Y. Wang, D. Wagner, C. Bathias, Int. J. Fatigue 82, 379-386 (2015).
- [35] R. W. Fonda, J. F. Bingert, Metall. Mater. Trans. A 37 (12), 3593-3604 (2006).
- [36] A. S. Zadeh, Mater. Sci. Eng. A 531, 112-118 (2012).
- [37] O. Myhr, Acta Mater. 49, 65-75 (2001).
- [38] A. Scialpi, M. De Giorgi, L.A.C. De Filippis, R. Nobile, F. M. Panella, Mater. Des. 29, 928-936 (2008).
- [39] Z. W. Ma, Y. Y. Jin, S. D. Ji, X. C. Meng, L. Ma, Q. H. Li, J. Mater. Sci. Technol. 35, 94-99 (2019).
Uwagi
EN
2. This work is supported by the National Natural Science Foundation of China (No. 51705339), the China Postdoctoral Science Foundation (No. 2016M590821) and the Guangdong Provincial Key Laboratory of Advanced Welding Technology for Ships (No. 2017B030302010).
PL
3. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-efb398be-6fdd-4a66-88a7-a93708c8c24b