PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Emission-intensity-enhanced GaN-based LED based on multilayer grating structures

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A novel surface-plasmon-enhanced GaN-LED is proposed to improve the emission efficiency of the traditional LED. The SiO2 film, Ag triangular structure and ITO film were coated on the rectangularly-patterned p-GaN layer sequentially, which can form the quasi-symmetrical waveguide structure to enhance the internal quantum efficiency and the light extraction efficiency. The COMSOL software is used to simulate the LED structure. The radiated powers, absorbed powers and distribution of electric field are obtained and analyzed. The results reveal that emission efficiency of the proposed GaN-LED can be greatly improved.
Słowa kluczowe
Czasopismo
Rocznik
Strony
529--540
Opis fizyczny
Bibliogr. 24 poz., rys.
Twórcy
autor
  • School of Mathematics and Information Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
autor
  • School of Mathematics and Information Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
autor
  • School of Mathematics and Information Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
autor
  • School of Mathematics and Information Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
autor
  • Key Laboratory of Measurement Technology & Instrumentation of Hebei Province, Yanshan University, Qinhuangdao 066004, China
autor
  • Key Laboratory of Measurement Technology & Instrumentation of Hebei Province, Yanshan University, Qinhuangdao 066004, China
Bibliografia
  • [1] LI Z., XUE D., LIU D., LIU Y., YE W., ZHANG Y., WANG Y., ZHENG C., Portable visible light communication transmitter and receiverusing core-shell CdSe/ZnS quantum dots white light-emitting diode, IET Communications 13(7), 2019, pp. 873–878, DOI: 10.1049/iet-com.2018.5303.
  • [2] HEA J., WU K., HE J., ZHOU Z., MA J., SHI J., An efficient encoder-subcarrier mapping method combined with polar code for visible light communication, IEEE Access 7, 2019, pp. 69119–69125, DOI: 10.1109/ACCESS.2019.2916005.
  • [3] XU J., ZHANG W., PENG M., DAI J., CHEN C., Light-extraction enhancement of GaN-based 395 nm flip-chip light-emitting diodes by an Al-doped ITO transparent conductive electrode, Optics Letters 43(11), 2018, pp. 2684–2687, DOI: 10.1364/OL.43.002684.
  • [4] PARK J., LEE J.H., Bending effect on the circular polarizer of an organic light-emitting diode display, Applied Optics 58(13), 2019, pp. 3671–3675, DOI: 10.1364/AO.58.003671.
  • [5] OKAMOTO K., NIKI I., SHVARTSER A., NARUKAWA Y., MUKAI T., SCHERER A., Surface-plasmon-enhanced light emitters based on InGaN quantum wells, Nature Materials 3(9), 2004, pp. 601–605, DOI: 10.1038/nmat1198.
  • [6] OKAMOTO K., NIKI I., SCHERER A., NARUKAWA Y., MUKAI T., KAWAKAMI Y., Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy, Applied Physics Letters 87(7), 2005, article 071102, DOI: 10.1063/1.2010602.
  • [7] OKAMOTO K., NIKI I., SHVARTSER A., MALTEZOS G., NARUKAMA Y., MUKAI T., KAWAKAMI Y., SCHERER A., Surface plasmon enhanced bright light emission from InGaN/GaN, Physica Status Solidi 204(6), 2007, pp. 2103–2017, DOI: 10.1002/pssa.200674856.
  • [8] YEH D.M., HUANG C.F., LU Y.C., CHEN C.Y., TANG T.-Y., HUANG J.-J., SHEN K.-C., YANG Y.-J., YANG C.C., Surface plasmon leakage in its coupling with an InGaN/GaN quantum well through an ohmic contact, Applied Physics Letters 91(6), 2007, article 063121, DOI: 10.1063/1.2768913.
  • [9] YEH D.M., HUANG C.F., CHEN C.Y., LU Y.C., YANG C.C., Localized surface plasmon-induced emission enhancement of a green light-emitting diode, Nanotechnology 19(34), 2008, article 345201, DOI: 10.1088/0957-4484/19/34/345201.
  • [10] CHO C.Y., KWON M.K., LEE S.J., HAN S.H., KANG J.W., KANG S.E., LEE D.Y., PARK S.J., Surface plasmon-enhanced light-emitting diodes using silver nanoparticles embedded in p-GaN, Nanotechnology 21(20), 2010, article 205201, DOI: 10.1088/0957-4484/21/20/205201.
  • [11] CHO C.Y., KIM K.S., LEE S.J., KWON M.K., KO H., KIM S.T., JUNG G.Y., PARK S.J., Surface plasmon-enhanced light-emitting diodes with silver nanoparticles and SiO2 nano-disks embedded in p-GaN, Applied Physics Letters 99(4), 2011, article 041107, DOI: 10.1063/1.3616149.
  • [12] SHEN K.C., LIAO C.H., YU Z.Y., WANG J.Y., LIN C.H., KIANG Y.W., YANG C.C., Effects of the intermediate SiO2 layer on polarized output of a light-emitting diode with surface plasmon coupling, Journal of Applied Physics 108(11), 2010, article 113101, DOI: 10.1063/1.3517082.
  • [13] KAO C.C., SU Y.K., LIN C.L., CHEN J.J., Localized surface plasmon-enhanced nitride-based light-emitting diode with Ag nanotrianglearray by nanosphere lithography, IEEE Photonics Technology Letters 22(13), 2010, pp. 984–986, DOI: 10.1109/LPT.2010.2049013.
  • [14] ZHANG H., ZHU J., ZHU Z., LI Q., JIN G., Surface-plasmon-enhanced GaN-LED based on the quasi-symmetrical planar waveguide structure, Optics Communications 311, 2013, pp. 311–316, DOI: 10.1016/j.optcom.2013.08.078.
  • [15] ZHANG H., ZHU J., ZHU Z., JIN Y., LI Q., JIN G., Surface-plasmon-enhanced GaN-LED based on a multilayered M-shaped nano-grating, Optics Express 21(11), 2013, pp. 13492–13501, DOI: 10.1364/OE.21.013492.
  • [16] ZHU J., ZHANG H., ZHU Z., LI Q., JIN G., Surface-plasmon-enhanced GaN-LED based on the multi-layered rectangular nano-grating, Optics Communications 322, 2014, pp. 66–72, DOI: 10.1016/j.optcom.2014.02.011.
  • [17] YAO Y.F., LIN C.H., CHAO C.Y., CHANG W.Y., SU C.Y., TU C.G., KIANG Y.W., YANG C.C., Coupling of a light-emitting diode with surface plasmon polariton or localized surface plasmon induced on surface silver gratings of different geometries, Optics Express 26(7), 2018, pp. 9205–9219, DOI: 10.1364/OE.26.009205.
  • [18] HONG S.H., KIM N.Y., KANG J.W., KIM J.J., JUNG Y.S., KIM D.Y., YIM S.Y., PARK S.J., Quantum efficiency enhancement depending on the thickness of p-GaN spacer layer in localized surface plasmon-enhanced near-ultraviolet light-emitting di odes by using colloidal silver nanoparticles, ECS Journal of Solid State Science and Technology 9(1), 2020, article 016003, DOI: 10.1149/2.0042001JSS.
  • [19] LIN T.H., WANG S.J., TU Y.C., HUNG C.H., YU T.H., Improving the performance of power GaN-based thin-film flip-chip LEDs through a twofold roughened surface, Materials Science in Semiconductor Processing 45, 2016, pp. 69–75, DOI: 10.1016/j.mssp.2016.01.010.
  • [20] OTTO A., Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection, Zeitschrift für Physik A Hadrons and nuclei 216(4), 1968, pp. 398–410, DOI: 10.1007/BF01391532.
  • [21] LI W.C., SHA X.P., LI Z.Q., MENG X.Y., GU E., Emission enhancement of light-emitting diode by localized surface plasmon induced by Ag inserts in p-GaN and TiO2 -Ag grating, Plasmonics 12(6), 2017, pp. 1855–1860, DOI: 10.1007/s11468-016-0454-4.
  • [22] LI Z., XIE R., LI X., GU E., NIU L., SHA X., Luminous enhancement of nitride light-emitting diodes by localized surface plasmon and triangular structure, Superlattices and Microstructures 120, 2018, pp. 127–135, DOI: 10.1016/j.spmi.2018.05.031.
  • [23] PALIK E.D., Handbook of Optical Constants of Solids, Academic Press, New York, 1998, pp. 52–63.
  • [24] GUO S.L., LI X., LI Z.Q., GU E., ZHAO X.T., Improving the luminous efficiency of gallium nitride-based light-emitting diodes using Ag nanograting structure, Journal of Nanophotonics 13(4), 2019, article 46010, DOI: 10.1117/1.JNP.13.046010.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-efac2ae7-6ee6-4935-8b28-97d423951d27
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.