PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A comprehensive review of graphene‑based aerogels for biomedical applications. The impact of synthesis parameters onto material microstructure and porosity

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Graphene-based aerogels (GA) have a high potential in the biomedical engineering field due to high mechanical strength, biocompatibility, high porosity, and adsorption capacity. Thanks to this, they can be used as scaffolds in bone tissue engineering, wound healing, drug delivery and nerve tissue engineering. In this review, a current state of knowledge of graphene (Gn) and graphene oxide (GO) aerogels and their composites used in biomedical application is described in detail. A special focus is paid first on the methods of obtaining highly porous materials by visualizing the precursors and describing main methods of Gn and GO aerogel synthesis. The impact of synthesis parameters onto aerogel microstructure and porosity is discussed according to current knowledge. Subsequent sections deal with aerogels intended to address specific therapeutic demands. Here we discuss the recent methods used to improve Gn and GO aerogels biocompatibility. We explore the various types of GA reported to date and how their architecture impacts their ultimate ability to mimic natural tissue environment. On this basis, we summarized the research status of graphene-based aerogels and put forward the challenges and outlook of graphene-based aerogels dedicated to biomedical usage especially by formation of joints with biocompatible metals.
Rocznik
Strony
art. no. e133, 2023
Opis fizyczny
Bibliogr. 159 poz., rys., tab., wykr.
Twórcy
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta 25, 30-059 Krakow, Poland
  • Faculty of Foundry Engineering, AGH University of Science and Technology, Reymonta 23, 30-059 Krakow, Poland
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta 25, 30-059 Krakow, Poland
Bibliografia
  • 1. Novoselov K, Geim A, Morozov S, Jiang D, Zhang Y, Dubonos S, et al. Electric field effect in atomically thin carbon films. Science. 2004;306:666-70. https://doi.org/10.1126/science.1102896.
  • 2. Worsley MA, Pauzauskie PJ, Olson TY, Biener J, Satcher JH, Baumann TF. Synthesis of graphene aerogel with high electrical conductivity. J Am Chem Soc. 2010;132:14067-9. https://doi.org/10.1021/ja1072299.
  • 3. Chen Z, Ren W, Gao L, Liu B, Pei S, Cheng HM. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater. 2011;10:424-8. https://doi.org/10.1038/nmat3001.
  • 4. Bosch-Navarro C, Coronado E, Marti-Gastaldo C, Sanchez-Royo JF, Gomez MG. Influence of the pH on the synthesis of reduced graphene oxide under hydrothermal conditions. Nanoscale. 2012;4(13):3977. https://doi.org/10.1039/c2nr30605k.
  • 5. Meyers MA, Chen PY, Lin AY, Seki Y. Biological materials structure and mechanical properties. Prog Mater Sci. 2008;53:1-206. https://doi.org/10.1016/j.pmatsci.2007.05.002.
  • 6. K. Muthoosamy, R. Geetha Bai, I.B. Abubakar, S.M. Sudheer, H.N. Lim, H.S. Loh, Exceedingly biocompatible and thin-layered reduced graphene oxide nanosheets using an eco-friendly mushroom extract strategy, Int. J. Nanomed. 10 (2015) 1505-1519, doi: https://doi.org/10.2147/IJN.S75213.
  • 7. Akhavan O, Ghaderi E. Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner. Carbon. 2012;50:1853-60. https://doi.org/10.1016/j.carbon.2011.12.035.
  • 8. Zhu C, Guo S, Fang Y, Dong S. Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. ACS Nano. 2010;4:2429-37. https://doi.org/10.1021/nn1002387.
  • 9. Liu J, Fu S, Yuan B, Li Y, Deng Z. Toward a universal “adhesive nanosheet” for the assembly of multiple nanoparticles based on a protein-induced reduction/ decoration of graphene oxide. J Am Chem Soc. 2010;132:7279-81. https://doi.org/10.1021/ja100938r.
  • 10. Chen D, Li L, Guo L. An environment-friendly preparation of reduced graphene oxide nanosheets via amino acid. Nanotech. 2011;22:325601. https://doi.org/10.1088/0957-4484/22/32/325601.
  • 11. Pham VH, Cuong TV, Nguyen-Phan TD, Pham HD, Kim EJ, Hur SH, et al. One-step synthesis of superior dispersion of chemically converted graphene in organic solvents. Chem Commun. 2010;46:4375-7. https://doi.org/10.1039/C0CC00363H.
  • 12. Singh RK, Kumar R, Singh DP. Graphene oxide: strategies for synthesis, reduction and frontier applications. RSC Adv. 2016;6:64993-5011. https://doi.org/10.1039/C6RA07626B.
  • 13. Qiu L, Li D, Cheng HM. Structural control of graphene-based materials for unprecedented performance. ACS Nano. 2018;12:5085. https://doi.org/10.1021/acsnano.8b03792.
  • 14. Wang X, Zhang Y, Zhi C, Wang X, Tang D, Xu Y. Three-dimensional strutted graphene grown by substrate-free sugar blowing for high-powerdensity supercapacitors. Nat Commun. 2013;4:2905-8. https://doi.org/10.1038/ncomms3905.
  • 15. Chen W, Xiao P, Chen H, Zhang H, Zhang Q, Chen Y. Polymeric graphene bulk materials with a 3D cross-linked monolithic graphene network. Adv Mater. 2019;31:1802403-15. https://doi.org/10.1002/adma.201802403.
  • 16. Chena X, Laia D, Yuan B, Fu ML. Fabrication of superelastic and highly conductive graphene aerogels by precisely “unlocking” the oxygenated groups on graphene oxide sheets. Carbon. 2020;162:552-61. https://doi.org/10.1016/j.carbon.2020.02.082.
  • 17. Huang H, Chen P, Zhang X, Lu Y, Zhan W. Edge-to-edge assembled graphene oxide aerogels with outstanding mechanical performance and superhigh chemical activity. Small. 2013;9:1397-404.
  • 18. Li C, Wu ZY, Liang HW, Chen JF, Yu SH. Ultralight multifunctional carbon-based aerogels by combining graphene oxide and bacterial cellulose. Small. 2017;13:1700453-8.
  • 19. Wei AX, Huang T, Yang J, Zhang N. Green synthesis of hybrid graphene oxide/microcrystalline cellulose aerogels and their use as superabsorbents. J Hazard Mater. 2017;335:28-38. https://doi.org/10.1016/j.jhazmat.2017.04.030.
  • 20. Hsan N, Dutta PK, Kumar S, Bera R, Das N. Chitosan grafted graphene oxide aerogel: synthesis, characterization and carbon dioxide capture study. Int J Biol Macromol. 2019;125:300-6. https://doi.org/10.1016/j.ijbiomac.2018.12.071.
  • 21. Aidun A, Ahmadi A. Graphene oxide incorporated polycaprolactone/chitosan/collagen electrospun scaffold: enhanced osteogenic properties for bone tissue engineering. Artif Organs. 2019;43:264-81. https://doi.org/10.1111/aor.13474.
  • 22. Fang H, Luo C, Liu S, Zhou M, Zeng Y, Hou J, et al. A biocompatible vascularized graphene oxide (GO) -collagen chamber with osteoinductive and anti-fibrosis effects promotes bone regeneration in vivo. Theranostics. 2020;10:2759e-e2772. https://doi.org/10.7150/thno.42006.
  • 23. Liu S, Zhou C, Mou S, Li J, Zhou M, Zeng Y. Biocompatible graphene oxide e collagen composite aerogel for enhanced stiff ness and in situ bone regeneration. Mater Sci Eng C. 2019;105:110137. https://doi.org/10.1016/j.msec.2019.110137.
  • 24. Zhou L, Xu Z. Ultralight, highly compressible, hydrophobic and anisotropic lamellar carbon aerogels from graphene/polyvinyl alcohol/cellulose nanofiber aerogel as oil removing absorbents. J Hazard Mater. 2020;388:121804. https://doi.org/10.1016/j.jhazmat.2019.121804.
  • 25. Wang C, Chen X, Wang B, Huang M, Wang B, Jiang Y, et al. Freeze-casting produces a graphene oxide aerogel with a radial and centrosymmetric structure. ACS Nano. 2018;12:5816-25. https://doi.org/10.1021/acsnano.8b01747.
  • 26. Min P, Li X, Liu P, Liu J, Jia XQ, Li XP, et al. Rational design of soft yet elastic lamellar graphene aerogels via bidirectional freezing for ultrasensitive pressure and bending sensors. Adv Funct Mater. 2021;31:2103703. https://doi.org/10.1002/adfm.202103703.
  • 27. Liu P, Li X, Min P, Chang X, Shu C, Ding Y, et al. 3D lamellar-structured graphene aerogels for thermal interface composites with high through-plane thermal conductivity and fracture toughness. Nano-Micro Lett. 2021;13:22. https://doi.org/10.1007/s40820-020-00548-5.
  • 28. Riaz MA, Hadi P, Abidi IH, Tyagi A, Ou X, Luo Z. Recyclable 3D graphene aerogel with bimodal pore structure for ultrafast and selective oil sorption from water. RSC Adv. 2017;7:29722-31. https://doi.org/10.1039/C7RA02886E.
  • 29. Xie J, Niu L, Qiao Y, Lei Y, Li G, Zhang X, et al. The influence of the drying method on the microstructure and the compression behavior of graphene aerogel. Diam Relat Mater. 2022;121:108772. https://doi.org/10.1016/j.diamond.2021.108772.
  • 30. Cheng Y, Zhou S, Hu P. Enhanced mechanical, thermal, and electric properties of graphene aerogels via supercritical ethanol drying and high-temperature thermal reduction. Sci Rep. 2017;7:1439. https://doi.org/10.1038/s41598-017-01601-x.
  • 31. Wang R, Shou D, Lv O, Kong Y, Deng L, Shen J. pH-Controlled drug delivery with hybrid aerogel of chitosan, carboxymethyl cellulose and graphene oxide as the carrier. Int J Biol Macromol. 2017;103:248-53. https://doi.org/10.1016/j.ijbiomac.2017.05.064.
  • 32. Lim MB, Ganas AS, Hanson JL, Zhou X, Hellner B, Manandhar S, et al. Crystalline loading of lipophilic Coenzyme Q10 pharmaceuticals within conjugated carbon aerogel derivatives. Carbon. 2020;164:451-8. https://doi.org/10.1016/j.carbon.2020.02.028.
  • 33. Feng S, Yu L, Yan M, Ye J, Huang J, Yang X. Holey nitrogen-doped graphene aerogel for simultaneously electrochemical determination of ascorbic acid, dopamine and uric acid. Talanta. 2021;224:121851. https://doi.org/10.1016/j.talanta.2020.121851.
  • 34. Sun Y, Lin Y, Sun W, Han R, Luo C, Wang X, et al. A highly selective and sensitive detection of insulin with chemiluminescence biosensor based on aptamer and oligonucleotide-AuNPs functionalized nanosilica @ graphene oxide aerogel. Anal Chim Acta. 2019;1089:152-64. https://doi.org/10.1016/j.aca.2019.09.004.
  • 35. Qiu L, Liu J, Chang S. Biomimetic superelastic graphene-based cellular monoliths. Nat Commun. 2012;3:1241. https://doi.org/10.1038/ncomms2251.
  • 36. Barg S, Perez F, Ni N. Mesoscale assembly of chemically modified graphene into complex cellular networks. Nat Commun. 2014;5:4328. https://doi.org/10.1038/ncomms5328.
  • 37. Zhang B, Zhang J, Sang X. Cellular graphene aerogel combines ultralow weight and high mechanical strength: A highly efficient reactor for catalytic hydrogenation. Sci Rep. 2016;6:25830. https://doi.org/10.1038/srep25830.
  • 38. Liu P, Li X, Min P, Chang X, Shu C, Ding Y, et al. 3D lamellar-structured graphene aerogels for thermal interface composites with high through-plane thermal conductivity and fracture toughness. Nanomicro Lett. 2020;13:22. https://doi.org/10.1007/s40820-020-00548-5.
  • 39. H. Yang, Z. Li, G. Sun, X. Jin, B. Lu, P. Zhang, T et al., Superplastic air-dryable graphene hydrogels for wet-press assembly of ultrastrong superelastic aerogels with infinite macroscale, Adv. Funct. Mater. 29 (2019), doi: https://doi.org/10.1002/adfm.201901917.
  • 40. Wan W, Zhang F, Yu S, Zhang R, Zhou Y. Hydrothermal formation of graphene aerogel for oil sorption: the role of reducing agent, reaction time and temperature. NJC. 2016;40:3040-6. https://doi.org/10.1039/c5nj03086b.
  • 41. Serrapede M, Fontana M, Gigot A, Armandi M, Biasotto G, Tresso E, et al. A facile and green synthesis of a moo2-reduced graphene oxide aerogel for energy storage devices. Materials. 2020;13:594. https://doi.org/10.3390/ma13030594.
  • 42. Liu H, Gao B, Yuan W, Li H, Li J, Li Y, et al. Modification of graphene aerogel with titania nanotubes for efficient methylene blue adsorption kinetics. J Sol-Gel Sci Technol. 2021;97:271-80. https://doi.org/10.1007/s10971-020-05449-y.
  • 43. García-Bordejé E, Víctor-Román S, Sanahuja-Parejo O, Benito AM, Maser WK. Control of the microstructure and surface chemistry of graphene aerogels via PH and time manipulation by a hydrothermal method. Nanoscale. 2018;10:3526-39. https://doi.org/10.1039/C7NR08732B.
  • 44. Hu K, Szkopek T, Cerruti M. Tuning the aggregation of graphene oxide dispersions to synthesize elastic, low density graphene aerogels. J Mater Chem A. 2017;5:23123-30. https://doi.org/10.1039/C7TA07006C.
  • 45. Huang P, Zhu R, Li C, Wang X, Wang X, Zhang X. Effect of graphene concentration on tribological properties of graphene aerogel/TiO2 composite through controllable cellular-structure. Mater Des. 2020;188:108468. https://doi.org/10.1016/j.matdes.2020.108468.
  • 46. S. Karamikamkar A. Abidli, E. Behzadfarb, S. Rezaei, H.E. Nagui, C.B. Park, The effect of graphene-nanoplatelets on gelation and structural integrity of a polyvinyltrimethoxysilane-based aerogel, RSC Adv. 9 (2019) 11503-11520, doi: https://doi.org/10.1039/C9RA00994A.
  • 47. Lin C, Ritter JA. Effect of synthesis pH on the structure of carbon xerogels. Carbon. 1997;35:1271-8. https://doi.org/10.1016/s0008-6223(97)00069-9.
  • 48. Kondratowicz I, Żelechowska K, Nadolska M, Jażdżewska A, Gazda M. Comprehensive study on graphene hydrogels and aerogels synthesis and their ability of gold nanoparticles adsorption. Colloids Surf A Physicochem Eng Asp. 2017;528:65-73.
  • 49. Worsley MA, Olson TY, Lee JRI, Willey TM, Nielsen MH, Roberts SK, et al. High surface area, sp2-cross-linked three-dimensional graphene monoliths. J Phys Chem. 2011;2:921-5. https://doi.org/10.1021/jz200223x.
  • 50. Ortiz-Martínez VM, Gómez-Coma L, Ortiz A, Ortiz I. Overview on the use of surfactants for the preparation of porous carbon materials by the sol-gel method: applications in energy systems. Rev Chem Eng. 2020;36:771-87. https://doi.org/10.1515/revce-2018-0056.
  • 51. Pruna A, Cárcel A, Benedito A, Giménez E. Hydrothermal-freeze-casting of poly(amidoamine)-modified graphene aerogels towards co2 adsorption. Int J Mol Sci. 2021;22:9333. https://doi.org/10.3390/ijms22179333.
  • 52. Gao W, Zhaob N, Yaoa W, Xua Z, Baib H, Gao C. Effect of flake size on the mechanical properties of graphene aerogels prepared by freeze casting. RSC Adv. 2017;7:33600-5. https://doi.org/10.1039/C7RA05557A.
  • 53. Zhu X, Yang C, Wu P, Ma Z, Shang Y, Bai G, et al. Precise control of versatile microstructure and properties of graphene aerogel via freezing manipulation. Nanoscale. 2020;12:4882-94. https://doi.org/10.1039/C9NR07861D.
  • 54. Sheng K, Xu Y, Li C, Shi G. High-performance self-assembled graphene hydrogels prepared by chemical reduction of graphene oxide. New Carbon Mater. 2011;26:9-15. https://doi.org/10.1016/S1872-5805(11)60062-0.
  • 55. Pei S, Zhao J, Du J, Ren W, Cheng HM. Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon. 2010;48:4466-74. https://doi.org/10.1016/j.carbon.2010.08.006.
  • 56. Moon IK, Lee J, Ruoff R, Lee H. Reduced graphene oxide by chemical graphitization. Nat Commun. 2010. https://doi.org/10.1038/ncomms1067.
  • 57. Park S, An J, Potts JR, Velamakanni A, Murali S, Ruoff RS. Hydrazine-reduction of graphite- and graphene oxide. Carbon. 2011;49:3019-23. https://doi.org/10.1016/j.carbon.2011.02.071.
  • 58. Bai H, Walsh F, Gludovatz B, Delattre B, Huang C, Chen Y, et al. Bioinspired hydroxyapatite/poly(methyl methacrylate) composite with a nacre-mimetic architecture by a bidirectional freezing method. Adv Mater. 2016;28:50-6. https://doi.org/10.1002/adma.201504313.
  • 59. Zhao N, Yang M, Zhao Q, Gao W, Xie T, Bai H. Superstretchable nacre-mimetic graphene/poly(vinyl alcohol) composite film based on interfacial architectural engineering. ACS Nano. 2017;11:4777-84. https://doi.org/10.1021/acsnano.7b010 89.
  • 60. Kuila T, Bose S, Khanra P, Mishra AK, Kim NH, Lee JH. A green approach for the reduction of graphene oxide by wild carrot root. Carbon. 2012;50:914-21. https://doi.org/10.1016/j.carbon.2011.09.053.
  • 61. Wang Y, Shi ZX, Yin J. Facile synthesis of soluble graphene via a green reduction of graphene oxide in tea solution and its biocomposites. ACS Appl Mater Interfaces. 2011;3:1127-33. https://doi.org/10.1021/am1012613.
  • 62. Chen T, Yang G, Wang J, Ma L, Yang S. Surfactant stabilized GO liquid crystal for constructing double-walled honeycomb-like GO aerogel with super-sensitivity for fingertip pulse monitoring. Carbon. 2021;184:53-63. https://doi.org/10.1016/j.carbon.2021.08.010.
  • 63. De Silva KKH, Huang HH, Joshi RK, Yoshimura M. Chemical reduction of graphene oxide using green reductants. Carbon. 2017;119:190-9. https://doi.org/10.1016/j.carbon.2017.04.025.
  • 64. Sui Z, Meng Q, Zhang X, Mab R, Cao B. Green synthesis of carbon nanotube-graphene hybrid aerogels and their use as versatile agents for water purification. J Mater Chem. 2012;22:8767-71. https://doi.org/10.1039/C2JM00055E.
  • 65. Fan Z, Tng DZY, Lim CXT, Liu P, Nguyen ST, Xiao P, et al. Thermal and electrical properties of graphene/carbon nanotube aerogels. Colloids Surf A Physicochem Eng. 2014;445:48-53.
  • 66. Huang HH, De Silva K, Kumara GRA. Structural evolution of hydrothermally derived reduced graphene oxide. Sci Rep. 2018;8:6849. https://doi.org/10.1038/s41598-018-25194-1.
  • 67. Mei X, Meng X, Wu F. Hydrothermal method to produce reduced graphene oxide. Phys E. 2015;68:81-6. https://doi.org/10.1016/j.physe.2014.12.011.
  • 68. Hu H, Zhao Z, Wan W, Gogotsi Y, Qiu J. Ultralight and highly compressible graphene aerogels. Adv Mater. 2013;25:2219-23. https://doi.org/10.1002/adma.201204530.
  • 69. Zhu W, Jiang X, Liu F, You F, Yao C. Preparation of chitosan-graphene oxide composite aerogel by hydrothermal method and its adsorption property of methyl orange. Polymers. 2020;12:2169. https://doi.org/10.3390/polym12092169.
  • 70. Hu K, Xie X, Szkopek T, Cerruti M. Understanding hydrothermally reduced graphene oxide hydrogels: from reaction products to hydrogel properties. Chem Mater. 2016;28:1756-68. https://doi.org/10.1021/acs.chemmater.5b04713.
  • 71. Xu YX, Sheng KX, Li C, Shi GQ. Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano. 2010;4:4324-30.
  • 72. Wan W, Zhang F, Yu S, Zhangb R, Zhou Y. Hydrothermal formation of graphene aerogel for oil sorption: the role of reducing agent, reaction time and temperature. New J Chem. 2016;40:3040-6. https://doi.org/10.1039/C5NJ03086B.
  • 73. Tang Z, Gao L, Wu Y, Su T, Wu Q, Liu X, et al. BSA-rGO nanocomposite hydrogel formed by UV polymerization and in situ reduction applied as biosensor electrode. J Mater Chem B. 2013;1:5393-7. https://doi.org/10.1039/c3tb20899k.
  • 74. D.T. Ge, L.L Yang, L. Fan, C.F. Zhang, X. Xiao, Y. Gogotsi, et al., Foldable supercapacitors from triple networks of macroporous cellulose fibers, single-walled carbon nanotubes and polyaniline nanoribbons, Nano Energy 11, (2015) 568-578, doi: https://doi.org/10.1016/j.nanoen.2014.11.023.
  • 75. Zhang XF, Liu P, Duan YX, Jiang M, Zhang JM. Graphene/cellulose nanocrystals hybrid aerogel with tunable mechanical strength and hydrophilicity fabricated by ambient pressure drying technique. RSC Adv. 2017;27:16467-73. https://doi.org/10.1039/C6RA28178H.
  • 76. Xiong R, Kim HS, Zhang LJ, Korolovych VF, Zhang SD, Yingling YG, et al. Wrapping nanocellulose nets around graphene oxide sheets. Angew Chem Int Ed. 2018;57:8508-13. https://doi.org/10.1002/anie.201803076.
  • 77. Lawrence RA, Gante N, Sacchi M. Reduction of NO on chemically doped, metal-free graphene. Carbon Trends. 2021;5:10011. https://doi.org/10.1016/j.cartre.2021.100111.
  • 78. Liu Y, Fang N, Liu B, Song L, Wen B, Yang D. Aligned porous chitosan/graphene oxide scaffold for bone tissue engineering. Mater Letters. 2018;233:78-81. https://doi.org/10.1016/j.matlet.2018.08.108.
  • 79. Solano V, Roberto J, Baudrit V. Micro, meso and macro porous materials on medicine. J Biomater Nanobiotech. 2015;6:247-56. https://doi.org/10.4236/jbnb.2015.64023.
  • 80. Ziegler C, Wolf A, Liu W, Herrmann AK, Gaponik N, Eych-müller A. Modern Inorganic Aerogels. Angew Chem Int Ed. 2017;56:13200-21. https://doi.org/10.1002/anie.201611552.
  • 81. Feng J, Su BL, Xia H, Zhao S, Gao C, Wang L, et al. Printed aerogels: chemistry, processing, and applications. Chem Soc Rev. 2021;50:3842-88. https://doi.org/10.1039/C9CS00757A.
  • 82. Duffours L, Woignier T, Phalippou J. Plastic behaviour of aerogels under isostatic pressure. J Non-Cryst Solids. 1995;186:321-7. https://doi.org/10.1016/0022-3093(95)00059-3.
  • 83. T. Zhai, J. Li, X. Wang, W. Yan, C. Zhang, L. Verdolotti, et al., Carbon-based aerogel in three-dimensional polyurethane scaffold: The effect of in situ unidirectional aerogel growth on piezoresistive properties, Sens. Actuator A Phys. 333 (2022) 113306. https://doi.org/10.1016/j.sna.2021.113306.
  • 84. Chen J, Lv L, Li Y, Ren X, Luo H, Gao Y, et al. Preparation and evaluation of Bletilla striata polysaccharide/graphene oxide composite hemostatic sponge. International J Biol Macromol. 2019;130:827-35. https://doi.org/10.1016/j.ijbiomac.2019.02.137.
  • 85. Li G, Hong G, Dong D, Song W, Zhang X. Multiresponsive graphene-aerogel-directed phase-change smart fibers. Adv Mater. 2018;30:1801754. https://doi.org/10.1002/adma.201801754.
  • 86. Smith AT, LaChance AM, Zeng S, Liu B, Sun L. Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites, Nano. Mater Sci. 2019;1:31-47. https://doi.org/10.1016/j.nanoms.2019.02.004.
  • 87. Jiang Y, Xu Z, Huang T, Liu Y, Guo F, Xi J, et al. Direct 3D printing of ultralight graphene oxide aerogel microlattices. Adv Funct Mater. 2018;28:1707024. https://doi.org/10.1002/adfm.201707024.
  • 88. Z. Li, X. Huang, K. Wu, Y. Jiao, C. Zhou, Fabrication of regular macro-mesoporous reduced graphene aerogel beads with ultra-high mechanical property for efficient bilirubin adsorption, Mater. Sci. Eng. C 106 (2020) 110282. https://doi.org/10.1016/j.msec.2019.110282.
  • 89. Hong JY, Yun S, Wie JJ, Zhang X, Dresselhaus MS, Kong J, et al. Cartilage-inspired superelastic ultradurable graphene aerogels prepared by the selective gluing of intersheet joints. Nanoscale. 2016;8:12900-9. https://doi.org/10.1039/C6NR01986B.
  • 90. Qu H, Fu H, Han Z, Sun Y. Biomaterials for bone tissue engineering scaffolds: a review. RSC Adv. 2019;9:26252-62. https://doi.org/10.1039/C9RA05214C.
  • 91. Muñoz-Ruíz A, Escobar-García DM, Quintana M, Pozos-Guillén A, Flores H. Synthesis and characterization of a new collagen-alginate aerogel for tissue engineering. J Nanomater. 2019;6:1-10. https://doi.org/10.1155/2019/2875375.
  • 92. Pandele AM, Ionita M, Crica L, Vasile E, Iovu H. Novel Chitosan-poly(vinyl alcohol)/graphene oxide biocomposites 3D porous scaffolds. Compos B Eng. 2017;126:81-7. https://doi.org/10.1016/j.compositesb.2017.06.010.
  • 93. Zhang D, Wu X, Chen J, Lin K. The development of collagen based composite scaffolds for bone regeneration. Bioact Mater. 2018;3:129-38. https://doi.org/10.1016/j.bioactmat.2017.08.004.
  • 94. Bahrami S, Baheiraei N, Shahrezaee M. Biomimetic reduced graphene oxide coated collagen scaffold for in situ bone regeneration. Sci Rep. 2021;11:16783. https://doi.org/10.1038/s41598-021-96271-1.
  • 95. Francolini I, Perugini E, Silvestro I, Lopreiato M, d’Abusco AS, Valentini F, et al. Graphene oxide oxygen content affects physical and biological properties of scaffolds based on chitosan/graphene oxide conjugates. Materials. 2019;12:1142. https://doi.org/10.3390/ma12071142.
  • 96. Tripathi G, Basu B. A porous hydroxyapatite scaffold for bone tissue engineering: Physico-mechanical and biological evaluations. Ceram Int. 2012;38:341-9. https://doi.org/10.1016/j.ceramint.2011.07.012.
  • 97. Nie W, Peng C, Zhou X, Chen L, Wang W, Zhang Y, et al. Three-dimensional porous scaffold by self-assembly of reduced graphene oxide and nano-hydroxyapatite composites for bone tissue engineering. Carbon. 2017;116:325-37. https://doi.org/10.1016/j.carbon.2017.02.013.
  • 98. Zhu S, Yao L, Pan C, Tian J, Li L, Luo B, et al. 3D printed gellan gum/graphene oxide scaffold for tumor therapy and bone reconstruction. Composites Sci Tech. 2021. https://doi.org/10.1016/j.compscitech.2021.108763.
  • 99. Nosrati H, Mamoory RS, Le DQS, Bunger CE. Fabrication of gelatin/hydroxyapatite/3D-graphene scaffolds by a hydrogel 3D-printing method. Mater Chem Phys. 2020. https://doi.org/10.1016/j.matchemphys.2019.122305.
  • 100. Bernardes BG, Del Gaudio P, Alves P, Costa R, García-Gonzaléz CA, Oliveira AL. Bioaerogels: Promising nanostructured materials in fluid management, healing and regeneration of wounds. Molecules. 2021;26:3834. https://doi.org/10.3390/molecules26133834.
  • 101. Singh SK, Singh MK, Nayak MK, Kumari S, Shrivastava S, Gracio JJA, et al. Thrombus inducing property of atomically thin graphene oxide sheets. ACS Nano. 2011;5:4987-96. https://doi.org/10.1021/nn201092p.
  • 102. Quan K, Li G, Luan D, Yuan Q, Tao L, Wang X. Black hemostatic sponge based on facile prepared cross-linked graphene. Coll Surf B Biointer. 2015;132:27-33. https://doi.org/10.1016/j.colsurfb.2015.04.06.
  • 103. Quan K, Li G, Tao L, Xie Q, Yuan Q, Wang X. Diaminopropionic acid reinforced graphene sponge and its use for hemostasis. ACS Appl Mater Interfaces. 2016;8:7666-73. https://doi.org/10.1021/acsami.5b12715.
  • 104. Li G, Liang Y, Xu C, Sun H, Tao L, Wei Y, et al. Polydopamine reinforced hemostasis of a graphene oxide sponge via enhanced platelet stimulation. Coll Surf B Biointer. 2019;174:35-41. https://doi.org/10.1016/j.colsurfb.2018.10.074.
  • 105. Liao KH, Lin YS, Macosko CW, Haynes CL. Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. CS Appl Mater Interfaces. 2011;3:2607-15. https://doi.org/10.1021/am200428v.
  • 106. Duch MC, Budinger GRS, Liang YT, Soberanes S, Urich D, Chiarella SE, et al. Minimizing oxidation and stable nanoscale dispersion improves the biocompatibility of graphene in the lung. Nano Lett. 2011;11:5201-7. https://doi.org/10.1021/nl202 515a.
  • 107. Locilento DA, Mercante LA, Andre RS, Mattoso LHC, Luna GLF, Brassolatti P. Biocompatible and biodegradable electrospun nanofibrous membranes loaded with grape seed extract for wound dressing application. J Nanomater. 2019;2019:2472964. https://doi.org/10.1155/2019/2472964.
  • 108. Mellado C, Figueroa T, Baez R, Castillo R, Melendrez M, Schulz B, et al. Development of graphene oxide composite aerogel with proanthocyanidins with hemostatic properties as a delivery system. ACS Appl Mater Inter. 2018;10:7717-29. https://doi.org/10.1021/acsami.7b16084.
  • 109. J. Borges-Vilches, T. Figueroa, S. Guajardo, C. Aguayo, K. Fernández, Improved hemocompatibility for gelatin-graphene oxide composite aerogels reinforced with proanthocyanidins for wound dressing applications, Coll. Surf. B Biointer. 206 (2021) 111941. https://doi.org/10.1016/j.colsurfb.2021.11194.
  • 110. J. Borges-Vilches, J. Poblete, F. Gajardo, C. Aguayo, K. Fernández, Graphene oxide/polyethylene glycol aerogel reinforced with grape seed extracts as wound dressing, J. Mater. Sci. 56 (2021) 16082-96. https://doi.org/10.1007/s10853-021-06297-z.
  • 111. Wang J, Liu C, Shuai Y, Cui X, Nie L. Controlled release of anticancer drug using graphene oxide as a drug-binding effector in konjac glucomannan/sodium alginate hydrogels. Coll Surf B Biointer. 2014;113:223-9. https://doi.org/10.1016/j.colsurfb.2013.09.009.
  • 112. Zheng L, Zhang S, Ying Z, Liu J, Zhou Y, Chen F. Engineering of aerogel-based biomaterials for biomedical applications. Int J Nanomedicine. 2020;15:2363-78. https://doi.org/10.2147/IJN.S238005.
  • 113. Naahidi S, Jafari M, Edalat F, Raymond K, Khademhosseini A, Chen P. Biocompatibility of engineered nanoparticles for drug delivery. J Control Release. 2013;166:182-94. https://doi.org/10.1016/j.jconrel.2012.12.013.
  • 114. Elsaesser A, Howard CV. Toxicology of nanoparticles. Adv Drug Deliv Rev. 2012;64:129-37. https://doi.org/10.1016/j.addr.2011.09.001.
  • 115. García-González CA, Alnaief M, Smirnova I. Polysaccharide-based aerogels - Promising biodegradable carriers for drug delivery systems. Carbohydr Polym. 2011;86:1425-38. https://doi.org/10.1016/j.carbpol.2011.06.066.
  • 116. Ganthala PD, Alavala S, Chella N, Andugulapati SB, Bathini NB, Sistla R. Co-encapsulated nanoparticles of Erlotinib and Quercetin for targeting lung cancer through nuclear EGFR and PI3K/AKT inhibition. Colloids Surf B Biointerfaces. 2022. https://doi.org/10.1016/j.colsurfb.2019.1107.
  • 117. Mariyappan V, Jeyapragasam T, Chen SM, Murugan K. Mo-W-O nanowire intercalated graphene aerogel nanocomposite for the simultaneous determination of dopamine and tyrosine in human urine and blood serum sample. J Electroanal Chem. 2021. doi.org/10.1016/j.jelechem.2021.115391.
  • 118. Ruiyia L, Fangchaob C, Haiyana Z, Xiulanb S, Zaijun L. Electrochemical sensor for detection of cancer cell based on folic acid and octadecylamine-functionalized graphene aerogel microspheres. Biosens Bioelectron. 2018;119:156-62. https://doi.org/10.1016/j.bios.2018.07.060.
  • 119. Biasotto G, Chiado A, Novara C, Fontana M, Armandi M, Zaghete MA, et al. Graphenic aerogels decorated with ag nanoparticles as 3d sers substrates for biosensing. Part Part Syst Charact. 2020;37:2000095. https://doi.org/10.1002/ppsc.202000095.
  • 120. Sroysee W, Kongsawatvoragul K, Phattharaphuti P, Kullawattanapokin P, Jangsan C, Tejangkura W, et al. Enzyme-immobilized 3D silver nanoparticle/graphene aerogel composites towards biosensors. Mater Chem Phys. 2022. https://doi.org/10.1016/j.matchemphys.2021.125572.
  • 121. Mao R, Yao W, Qadir A, Chen W, Gao W, Xu Y, et al. 3-D graphene aerogel sphere-based flexible sensors for healthcare applications. Sens Actuator A Phys. 2020. https://doi.org/10.1016/j.sna.2020.112144.
  • 122. Wei S, Qiu X, An J, Chen Z, Zhang X. Highly sensitive, flexible, green synthesized graphene/biomass aerogels for pressure sensing application. Compos Sci Technol. 2021. https://doi.org/10.1016/j.compscitech.2021.108730.
  • 123. Wang L, Zhang X, He Y, Wang Y, Zhong W, Mequanint K, et al. Ultralight conductive and elastic aerogel for skeletal muscle atrophy regeneration. Adv Funct Mater. 2018;29:1806200. https://doi.org/10.1002/adfm.201806200.
  • 124. Brown CJ, Simon T, Cilibrasi C, Lynch PJ, Harries RW, Graf AA, et al. Tuneable synthetic reduced graphene oxide scaffolds elicit high levels of three-dimensional glioblastoma interconnectivity in vitro. J Mater Chem B. 2022;10:373-83. https://doi.org/10.1039/D1TB01266E.
  • 125. K. Zeinali, M.T. Khorasani, A. Rashidi, M.D. Jouparid, Fabrication of graphene oxide aerogel to repair neural tissue, J. Clin. Res. Paramed. Sci.10 (2021) 119221. https://doi.org/10.5812/jcrps.119221.
  • 126. Zeinali K, Khorasani MT, Rashidi A, Joupari MD. Preparation and characterization of graphene oxide aerogel/gelatin as a hybrid scaffold for application in nerve tissue engineering. Int J Polym Mater Polym Biomater. 2021;70:674-83. https://doi.org/10.1080/00914037.2020.1760269.
  • 127. Mansouri N, Al-Sarawi SF, Mazumdar J, Losic D. Advancing fabrication and properties of three-dimensional graphene-alginate scaffolds for application in neural tissue engineering. RSC Adv. 2019;9:36838-48. https://doi.org/10.1039/C9RA07481C.
  • 128. Li J, Liu X, Crook JM, Wallace GG. 3D Printing of Cytocompatible Graphene/Alginate Scaffolds for Mimetic Tissue Constructs. Front Bioeng Biotechnol. 2020;8:824. https://doi.org/10.3389/fbioe.2020.00824.
  • 129. S.K. Liu, C.C. Zhou, S. Mou, Biocompatible graphene oxide-collagen composite aerogel for enhanced stiffness and in situ bone regeneration, Mater. Sci. Eng. C- Mater. Biol. Appl. 105 (2019) 110137. https://doi.org/10.1016/j.msec.2019.110137.
  • 130. Chai W, Wei Q, Yang M, Ji K, Guo Y, Wei S, Wang Y. The printability of three water based polymeric binders and their effects on the properties of 3D printed hydroxyapatite bone scaffold. Ceram Int. 2020;46:6663-71. https://doi.org/10.1016/j.ceramint.2019.11.154.
  • 131. D. Wu, E. Backstrom, M. Hakkarainen, Starch derived nano-sized graphene oxide functionalized bioactive porous starch scaffolds. macromolecular bioscience, Macromol. Biosci. (2017) doi: https://doi.org/10.1002/mabi.201600397.
  • 132. Yılmaz P, Er E, Bakırdere S, Ulgen K, Ozbek B. Application of supercritical gel drying method on fabrication of mechanically improved and biologically safe three-component scaffold composed of graphene oxide/chitosan/hydroxyapatite and characterization studies. J Mater Res Technol. 2019;8:5201-16. https://doi.org/10.1016/j.jmrt.2019.08.043.
  • 133. Mohandesa F, Salavati-Niasari M. Freeze-drying synthesis, characterization and in vitro bioactivity of chitosan/graphene oxide/ hydroxyapatite nanocomposite. RSC Adv. 2014;4:25993-6001. https://doi.org/10.1039/C4RA03534H.
  • 134. Selaru A, Herman H, Vlăsceanu GM, Dinescu S, Gharbia S, Baltă C, et al. Graphene-Oxide porous biopolymer hybrids enhance in vitro osteogenic differentiation and promote ectopic osteogenesis in vivo. Int J Mol Sci. 2022;23:491. https://doi.org/10.3390/ijms2301049.
  • 135. Asha S, Ananth AN, Jose SP, Rajan MAJ. Reduced graphene oxide aerogel networks with soft interfacial template for applications in bone tissue regeneration. Appl Nanosci. 2018;8:395-405. https://doi.org/10.1007/s13204-018-0803-z.
  • 136. Zhang Y, Guan J, Wu J, Ding S, Yang J, Zhang J, et al. N-alkylated chitosan/graphene oxide porous sponge for rapid and effective hemostasis in emergency situations. Carbohydr Polym. 2019;219:405-13. https://doi.org/10.1016/j.carbpol.2019.05.028.
  • 137. Figueroa T, Carmona S, Guajardo S, Borges J, Aguayo C, Fernández K. Synthesis and characterization of graphene oxide chitosan aerogels reinforced with flavan-3-ols as hemostatic agents. Colloids Surf B Biointerfaces. 2021;197:111398. https://doi.org/10.1016/j.colsurfb.2020.111398.
  • 138. Bajpai VK, Shukla S, Khan I, Kang SM, Haldorai Y, Tripathi KM, et al. A sustainable graphene aerogel capable of the adsorptive elimination of biogenic amines and bacteria from soy sauce and highly efficient cell proliferation. ACS Appl Mater Interfaces. 2019;11:43949-63. https://doi.org/10.1021/acsami.9b16989.
  • 139. Shukla S, Khan I, Bajpai VK, Lee H, Kim TY, Upadhyay A, et al. Sustainable graphene aerogel as an ecofriendly cell growth promoter and highly efficient adsorbent for histamine from red wine. ACS Appl Mater Interfaces. 2019;11:18165-77. https://doi.org/10.1021/acsami.9b02857.
  • 140. H. Ayazi, O. Akhavan, M. Raoufi, R. Varshochian, N.S. Hosseini Motlagh, et al., Graphene aerogel nanoparticles for in-situ loading/pH sensitive releasing anticancer drugs, Colloids Surf B Biointerfaces 186 (2020), doi: https://doi.org/10.1016/j.colsurfb.2019.110712.
  • 141. Li Y, Liao K, Lee S. A comparative study of antioxidant-loaded carbon nanoparticles as drug delivery vehicles. RSC Adv. 2014;4:56992-7. https://doi.org/10.1039/c4ra09470k.
  • 142. Zhu P, Li S, Zhou S, Ren N, Ge S, Zhang Y, et al. In situ grown COFs on 3D strutted graphene aerogel for electrochemical detection of NO released from living cells. Chem Eng J. 2021;420:127559. https://doi.org/10.1016/j.cej.2020.127559.
  • 143. Sobczak JJ, Drenchev LB, Sobczak N, Asthana R. On design of metal-matrix composites lighter than air, Mater. Sci Forum. 2013;736:55-71. https://doi.org/10.4028/www.scientific.net/MSF.736.55.
  • 144. Pietrzak K, Sobczak N, Chmielewski M, Homa M, Gazda A, Zybała R. Effects of carbon allotropic forms on microstructure and thermal properties of Cu-C composites produced by SPS. Materi Eng and Perform. 2016;25:3077-83. https://doi.org/10.1007/s11665-015-1851-0.
  • 145. Babul T, Baranowski M, Sobczak N, Homa M, Leśniewski W. Thermophysical properties of Cu-matrix composites manufactured using Cu powder coated with graphene. J of Materi Eng and Perform. 2016;25:3146-51. https://doi.org/10.1007/s11665-016-2174-5.
  • 146. Asthana R, Sobczak N. Wettability in joining of advanced ceramics and composites: Issues and challenges. Ceram Trans. 2014;248:591-600. https://doi.org/10.1002/9781118932995.ch67.
  • 147. Sobczak N, Singh M, Asthana R. High-Temperature wettability measurements in Metal/Ceramic systems - Some methodological issues. Current Opinion in Solid State Materials Science. 2005;9:241-53.
  • 148. Sánchez SA, Narciso J, Louis E, Rodríguez-Reinoso F, Saiz E, Tomsia A. Wetting and cailarity in the Sn/graphite system. Mater Sci Eng. 2008;495:187-91. https://doi.org/10.1016/j.msea.2007.09.090.
  • 149. N. Sobczak, J. Sobczak, P.K. Rohatgi, M. Ksiazek, W. Radziwill, J. Morgiel, The interaction between Ti or Cr containing copper alloys and porous graphite substrate, Proc. 2nd Int. Conf. High Temperature Capillarity, N. Eustathopoulos and N. Sobczak (Eds.), published by Foundry Research Institute, Poland 1998 145-151.
  • 150. Rafiee J, Mi X, Gullapalli H, Thomas A, Yavari F, Shi Y, et al. Wetting transparency of graphene. Nat Mater. 2012;11:217-22.
  • 151. C. Shih, Q.H. Wang, S. Lin, K.C. Park, Z. Jin, M.S. Strano, et al., Breakdown in the wetting transparency of graphene, Phys. Rev. Letters, 109 (2012) 176101. https://doi.org/10.1103/PhysRevLett.109.176101.
  • 152. Belyaeva LA, Tang C, Juurlink L, Schneider GF. Macroscopic and microscopic wettability of graphene. Langmuir. 2021;37:4049-55. https://doi.org/10.1021/acs.langmuir.0c02817.
  • 153. Shih CJ, Strano MS, Blankschtein D. Wetting translucency of graphene. Nat Mater. 2013;12(2014):866-9. https://doi.org/10.1038/nmat3760.
  • 154. Sobczak N, Sobczak JJ, Kudyba A, Homa M, Bruzda G, Grobelny M, et al. Wetting transparency of graphene deposited on copper in contact with liquid tin. Transactions of Foundry Research Institute. 2014. https://doi.org/10.7356/iod.2014.09.
  • 155. Sobczak N, Kudyba A, Nowak R, Radziwill W, Pietrzak K. Factors affecting wettability and bond strength of solder joint couples. Pure Appl Chem. 2007;79:1755-69. https://doi.org/ 10.1351/pac200779101755.
  • 156. Pstruś J, Ozga P, Gancarz T, Berent K. Effect of graphene layers on phenomena occurring at interface of Sn-Zn-Cu solder and Cu substrate. J Electr Mater. 2017;46:5248-58. https://doi.org/10.1007/s11664-017-5529-2.
  • 157. Homa M, Sobczak N, Sobczak JJ, Kudyba A, Bruzda G, Nowak R, et al. Interaction between graphene-coated SiC single crystal and liquid copper. J Mater Eng Perform. 2018;27:2317-29. https://doi.org/10.1007/s11665-018-3340-8.
  • 158. Homa M, Sobczak N, Sobczak JJ, Kudyba A, Bruzda G, Nowak R, et al. Interaction between liquid silver and graphene-coated SiC substrate. J Mater Eng Perform. 2018;27:4140-9. https://doi.org/10.1007/s11665-018-3503-7.
  • 159. Drewienkiewicz A, Żydek A, Trybula M, Pstruś J. Atomic level insight into wetting and structure of Ag droplet on graphene coated copper substrate-molecular dynamics versus experiment. Nanomater. 2021;11:1465. https://doi.org/10.3390/nano11061465.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-efaad246-a2c2-45c0-9a42-4a8d71987c7e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.