Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The applications of q-calculus in the approximation theory is a very interesting area of research in the recent years, several new q-operators were introduced and their behaviour were discussed by many researchers. This paper is the extension of the paper [15], in which Durrmeyer type generalization of q-Baskakov–Stancu type operators were discussed by using the concept of q-integral operators. Here, we propose to study the Stancu variant of q-Baskakov–Stancu type operators. We establish an estimate for the rate of convergence in terms of modulus of continuity and weighted approximation properties of these operators.
Wydawca
Czasopismo
Rocznik
Tom
Strony
404--412
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
autor
- Department of Mathematics, School of Basic Sciences, Indian Institute of Technology Patna, India
autor
- Research Scholar, Bansthali University, Rajasthan, India
autor
- Department of Mathematics, SRM University, NCR Campus, Modinagar 201204, India
Bibliografia
- [1] P. N. Agrawal, A. J. Mohammad, Linear combination of a new sequence of linear positive operators, Rev. Un. Mat. Argentina 44(1) (2003), 33–41.
- [2] A. Aral, V. Gupta, R. P. Agrawal, Application of q-Calculus in Operator Theory, Springer 2013, XII, 262 p. ISBN 978-1-4614-6945-2
- [3] A. Aral, V. Gupta, On q-Baskakov-type operators, Demonstratio Math. 42(1) (2009), 109–122.
- [4] A. Aral, V. Gupta, q-derivatives and application to the q-Szász–Mirakyan operators, Calcolo 43(3) (2006), 151–170.
- [5] A. Aral, A generalization of Szász–Mirakyan operators based on q-integers, Math. Comput. Modelling 47(9–10) (2008), 1052–1062.
- [6] C. Atacut, I. Buyukyazici, Stancu type generalization of the Favard–Szász operators, Appl. Math. Lett. 23(12) (2010), 1479–1482.
- [7] I. Buyukyazici, Approximation by Stancu–Chlodowsky polynomials, Comput. Math. Appl. 59(1) (2010), 274–282.
- [8] I. Buyukyazici, C. Atakut, On Stancu type generalization of q-Baskakov operators, Math. Comput. Modelling 52(5–6) (2010), 752–759.
- [9] R. A. DeVore, G. G. Lorentz, Constructive Approximation, Springer, Berlin, 1993.
- [10] O. Dogru, V. Gupta, Motonocity and asymptotic estimate of Bleiman, Butzer and Hahn operators based on q-integers, Georgian Math. J. 12(3) (2005), 415–422.
- [11] O. Dogru, V. Gupta, Korovkin type approximation properties of bivariate q-Meyer–König and Zeller operators, Calcolo 43(1) (2006), 51–63.
- [12] A. D. Gadzhiev, Theorems of the type of P. P. Korovkin type theorems, Math. Zametki 20(5) (1976), 781–786; English translation, Math. Notes 20(5–6) (1976), 996–998.
- [13] V. Gupta, R. P. Agrawal, Convergence Estimates in Approximation Theory, Springer, 2014. DOI 10.1007/978-3-319-02765-4
- [14] V. Gupta, T. Kim, J. Choi, Y. Hee Kim, Generating function for q-Bernstein, q-Meyer–König–Zeller and q-Beta basis, Autom. Comput. Math. 19(1) (2010), 7–11.
- [15] V. Gupta, T. Kim, Sang-Hun Lee, q-analogue of a new sequence of linear positive operators, J. Inequal. Appl. 2012:144.
- [16] A. Lupaş, A q-analogue of the Bernstein operator, in Seminar on Numerical and Statistical Calculus, Cluj-Napoca, 1987, 85–92. Preprint, 87-9, Univ. Babes-Bolyai, Cluj.
- [17] P. Maheshwari, D. Sharma, Approximation by q-Baskakov-Beta-Stancu operators, Rend. Circ. Mat. Palermo 61(2) (2012), 297–305.
- [18] G. M. Phillips, Bernstein polynomials based on the q-integers, Ann. Numer. Math. 1–4 (1997), 511–518.
- [19] X. Wang, The iterative approximation of a new sequence of linear positive operators, J. Jishou Univ. Nat. Sci. Ed. 26(2) (2005), 72–78.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-efa90b6a-aece-4c59-88a6-70948045a231