PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Certain generalized q-operators

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The applications of q-calculus in the approximation theory is a very interesting area of research in the recent years, several new q-operators were introduced and their behaviour were discussed by many researchers. This paper is the extension of the paper [15], in which Durrmeyer type generalization of q-Baskakov–Stancu type operators were discussed by using the concept of q-integral operators. Here, we propose to study the Stancu variant of q-Baskakov–Stancu type operators. We establish an estimate for the rate of convergence in terms of modulus of continuity and weighted approximation properties of these operators.
Wydawca
Rocznik
Strony
404--412
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
autor
  • Department of Mathematics, School of Basic Sciences, Indian Institute of Technology Patna, India
autor
  • Research Scholar, Bansthali University, Rajasthan, India
  • Department of Mathematics, SRM University, NCR Campus, Modinagar 201204, India
Bibliografia
  • [1] P. N. Agrawal, A. J. Mohammad, Linear combination of a new sequence of linear positive operators, Rev. Un. Mat. Argentina 44(1) (2003), 33–41.
  • [2] A. Aral, V. Gupta, R. P. Agrawal, Application of q-Calculus in Operator Theory, Springer 2013, XII, 262 p. ISBN 978-1-4614-6945-2
  • [3] A. Aral, V. Gupta, On q-Baskakov-type operators, Demonstratio Math. 42(1) (2009), 109–122.
  • [4] A. Aral, V. Gupta, q-derivatives and application to the q-Szász–Mirakyan operators, Calcolo 43(3) (2006), 151–170.
  • [5] A. Aral, A generalization of Szász–Mirakyan operators based on q-integers, Math. Comput. Modelling 47(9–10) (2008), 1052–1062.
  • [6] C. Atacut, I. Buyukyazici, Stancu type generalization of the Favard–Szász operators, Appl. Math. Lett. 23(12) (2010), 1479–1482.
  • [7] I. Buyukyazici, Approximation by Stancu–Chlodowsky polynomials, Comput. Math. Appl. 59(1) (2010), 274–282.
  • [8] I. Buyukyazici, C. Atakut, On Stancu type generalization of q-Baskakov operators, Math. Comput. Modelling 52(5–6) (2010), 752–759.
  • [9] R. A. DeVore, G. G. Lorentz, Constructive Approximation, Springer, Berlin, 1993.
  • [10] O. Dogru, V. Gupta, Motonocity and asymptotic estimate of Bleiman, Butzer and Hahn operators based on q-integers, Georgian Math. J. 12(3) (2005), 415–422.
  • [11] O. Dogru, V. Gupta, Korovkin type approximation properties of bivariate q-Meyer–König and Zeller operators, Calcolo 43(1) (2006), 51–63.
  • [12] A. D. Gadzhiev, Theorems of the type of P. P. Korovkin type theorems, Math. Zametki 20(5) (1976), 781–786; English translation, Math. Notes 20(5–6) (1976), 996–998.
  • [13] V. Gupta, R. P. Agrawal, Convergence Estimates in Approximation Theory, Springer, 2014. DOI 10.1007/978-3-319-02765-4
  • [14] V. Gupta, T. Kim, J. Choi, Y. Hee Kim, Generating function for q-Bernstein, q-Meyer–König–Zeller and q-Beta basis, Autom. Comput. Math. 19(1) (2010), 7–11.
  • [15] V. Gupta, T. Kim, Sang-Hun Lee, q-analogue of a new sequence of linear positive operators, J. Inequal. Appl. 2012:144.
  • [16] A. Lupaş, A q-analogue of the Bernstein operator, in Seminar on Numerical and Statistical Calculus, Cluj-Napoca, 1987, 85–92. Preprint, 87-9, Univ. Babes-Bolyai, Cluj.
  • [17] P. Maheshwari, D. Sharma, Approximation by q-Baskakov-Beta-Stancu operators, Rend. Circ. Mat. Palermo 61(2) (2012), 297–305.
  • [18] G. M. Phillips, Bernstein polynomials based on the q-integers, Ann. Numer. Math. 1–4 (1997), 511–518.
  • [19] X. Wang, The iterative approximation of a new sequence of linear positive operators, J. Jishou Univ. Nat. Sci. Ed. 26(2) (2005), 72–78.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-efa90b6a-aece-4c59-88a6-70948045a231
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.