PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Employment of Ca2+-rich MgO nanoparticles for effective treatment of real acid mine drainage

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The efficacy of Ca2+-rich MgO nanoparticles for the effective treatment of real acid mine drainage (AMD) was evaluated. The optimized parameters include the feedstock dosage and contact time. The experimental results were underpinned using state-of-the-art analytical techniques and instruments such as FTIR, HR-FIB/SEM, EDS, XRF, and XRD. The pH REDOX equilibrium (in C language) (PHREEQC) model was also employed to complement experimental results. Optimum conditions were observed to be 45–60 min of mixing time, ≥10 000 mg/dm3 of feedstock dosage, i.e., Ca2+-rich MgO nanoparticles, and ambient temperature and pH. The metal content (Fe3+, Mn2+, Cr2+, Cu2+, Ni2+, Pb2+, Al3+, and Zn2+) embedded in AMD matrices was practically removed (≥99% removal efficacies) whilst the sulfate was also attenuated humongous (≥40%). The PHREEQC predicted metals to exist as multi-valent including carbonates and other chemical complexes. Chemical species in real AMD were predicted to precipitate as metals hydroxides, (oxy)-hydroxides, carbonates, and (oxy)-hydro-sulfates. Henceforth, the use of Ca2+-rich MgO nanoparticles was proved to be effective in the treatment of AMD from coal mining activities. However, a polishing technology will be required to further remove residual sulfates. This could be pursued to recover sulfate in valuable form and then reclaim drinking water for domestic purposes or other defined uses (end-use). This will then be the most effective closed-loop approach in the management of AMD under the circular economy (CE) concept.
Rocznik
Strony
25--44
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
  • Department of Environmental Sciences, College of Agriculture and Environmental Sciences, University of South Africa (UNISA), P.O. Box 392, Florida, 1710, South Africa
  • Research and Committees Unit, Legislature Department, City of Ekurhuleni, Private Bag X1069, Germiston 1400, South Africa
  • Institute of Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Private Bag X6, Florida 1710, South Africa
  • Department of Environmental Sciences, College of Agriculture and Environmental Sciences, University of South Africa (UNISA), P.O. Box 392, Florida, 1710, South Africa
  • Magalies Water, Scientific Services, Research and Development Division, Erf 3475, Stoffberg Street, Brits 0250, South Africa
  • Institute of Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Private Bag X6, Florida 1710, South Africa
Bibliografia
  • [1] MASINDI V., CHATZISYMEON E., KORTIDIS I., FOTEINIS S., Assessing the sustainability of acid mine drainage (AMD) treatment in South Africa, Sci. Total Environ., 2018, 635, 793–802. DOI: 10.1016/j.scitotenv.2018.04.108.
  • [2] MASINDI V., FOTEINIS S., CHATZISYMEON E., Co-treatment of acid mine drainage and municipal wastewater effluents: Emphasis on the fate and partitioning of chemical contaminants, J. Hazard. Mater., 2022, 421, 126677. DOI: 10.1016/j.jhazmat.2021.126677.
  • [3] BAKER B.J., BAN J.F., Microbial communities in acid mine drainage, FEMS Microbiol. Ecol., 2003, 44, 139–152. DOI: 10.1016/S0168-6496(03)00028-X.
  • [4] HOGSDEN K.L., HARDING J.S., Consequences of acid mine drainage for the structure and function of benthic stream communities. A review, Freshwater Sci., 2012, 31 (1), 108–120, DOI: 10.1899/11-091.1.
  • [5] KEFENI K.K., MSAGATI T.M., MAMBA B.B., Synthesis and characterization of magnetic nanoparticles and study their removal capacity of metals from acid mine drainage, Chem. Eng. J., 2015, 276, 222–231. DOI: 10.1016/j.cej.2015.04.066.
  • [6] IGHALO J.O., KURNIAWAN S.B.,, IWUOZOR K.O., ANIAGOR O.C., AJALA O.J., OBA S.N., IWUCHUKWU F.U., AHMADI S., IGWEGBE C.A., A review of treatment technologies for the mitigation of the toxic environmental effects of acid mine drainage (AMD), Proc. Saf. Environ. Prot., 2022, 157, 37–58, DOI: 10.1016/j.psep.2021.11.008.
  • [7] SHABALALA A.N., EKOLU S.O., Quality of water recovered by treating acid mine drainage using pervious concrete adsorbent, Water SA, 2019, 45 (4), 638–647. DOI: 10.17159/wsa/2019.v45.i4.7545.
  • [8] MASINDI V., FOSSO-KANKEU E., MAMAKOA E., NKAMBULE T.T.I., MAMBA B.B., NAUSHAD M., PANDEY S., Emerging remediation potentiality of struvite developed from municipal wastewater for the treatment of acid mine drainage, Environ. Res., 2021, 210, 112944. DOI: 10.1016/j.envres.2022.112944.
  • [9] PARK I., TABELIN C.B., JEON S., LI X., SENO K., ITO M., HIROYOSHI N., A review of recent strategies for acid mine drainage prevention and mine tailings recycling, Chemosphere, 2019, 219, 588–606. DOI: 10.1016/j.chemosphere.2018.11.053.
  • [10] MASINDI V., FOTEINIS S., Recovery of phosphate from real municipal wastewater and its application for the production of phosphoric acid, J. Environ. Chem. Eng., 2021, 9 (6), 106625. DOI: 10.1016/j.jece.2021.106625.
  • [11] NLEYA Y., SIMATE G.S., NDLOVU S., Sustainability assessment of the recovery and utilisation of acid from acid mine drainage, J. Clean. Prod., 2016, 113, 17–27. DOI: 10.1016/j.jclepro.2015.11.005.
  • [12] AKINWEKOMI V., MAREE J.P., MASINDI V., ZVINOWANDA C., OSMAN M.S., FOTEINIS S., Beneficiation of acid mine drainage (AMD): A viable option for the synthesis of goethite, hematite, magnetite, and gypsum. Gearing towards a circular economy concept, Miner. Eng., 2020, 148, 106204. DOI: 10.1016/j.mineng.2020.106204.
  • [13] AKINWEKOMI V., MAREE J.P., ZVINOWANDA C., MASINDI V., Synthesis of magnetite from iron-rich mine water using sodium carbonate, J. Environ. Chem. Eng., 2017, 5 (3), 2699–2707. DOI: 10.1016/j.jece.2017.05.025.
  • [14] MASINDI V., FOTEINIS S., CHATZISYMEON E., Co-treatment of acid mine drainage and municipal wastewater effluents: Emphasis on the fate and partitioning of chemical contaminants, J. Hazard. Mater., 2022, 421, 126677. DOI: 10.1016/j.jhazmat.2021.126677.
  • [15] BOLOGO V., MAREE J.P., CARLSSON F., Application of magnesium hydroxide and barium hydroxide for the removal of metals and sulfate from mine water, Water SA, 2012, 38 (1), 23–28. DOI: 10.4314 /wsa.v38i1.4.
  • [16] NGUEGANG B., MASINDI V., ALFRED T., MAKUDALI M., Effective treatment of acid mine drainage using a combination of MgO nanoparticles and a series of constructed wetlands planted with Vetiveria zizanioides. A hybrid and stepwise approach, J. Environ. Manage., 2022, 310, 114751. DOI: 10.1016/j.jenvman.2022.114751.
  • [17] MASINDI V., Integrated treatment of acid mine drainage using cryptocrystalline magnesite and barium chloride, Water Pract. Technol., 2017, 12 (3), 727–736. DOI: 10.2166/wpt.2017.074.
  • [18] MASINDI V., GITARI W.M., Simultaneous removal of metal species from acidic aqueous solutions using cryptocrystalline magnesite/bentonite clay composite: An experimental and modelling approach, J. Clean. Prod., 2016, 112, 1077–1085. DOI: 10.1016/j.jclepro.2015.07.128.
  • [19] MASINDI V., AKINWEKOMI V., MAREE J.P., MUEDI K.L., Comparison of mine water neutralisation efficiencies of different alkaline generating agents, J. Environ. Chem. Eng., 2017, 5 (4), 3903–3913. DOI: 10.1016/j.jece.2017.07.062.
  • [20] MADZIVIRE G., MALEKA P.P., VADAPALLI V.R.K., GITARI W.M., LINDSAY R., PETRIK L.F., Fate of the naturally occurring radioactive materials during treatment of acid mine drainage with coal fly ash and aluminium hydroxide, J. Environ. Manage., 2014, 133, 12–17. DOI: 10.1016/j.jenvman.2013.11.041.
  • [21] SIMATE G.S., NDLOVU S., Acid mine drainage. Challenges and opportunities, J. Environ. Chem. Eng., 2014, 2 (3), 1785–1803. DOI: 10.1016/j.jece.2014.07.021.
  • [22] VHAHANGWELE M., MUGERA G.W., The potential of ball-milled South African bentonite clay for attenuation of heavy metals from acidic wastewaters: Simultaneous sorption of Co2+, Cu2+, Ni2+, Pb2+, and Zn2+ ions, J. Environ. Chem. Eng., 2015, 3 (4), 2416–2425. DOI: 10.1016/j.jece.2015.08.016.
  • [23] MASINDI V., GITARI M.W., TUTU H., DEBEER M., Removal of boron from aqueous solution using magnesite and bentonite clay composite, Desalin. Water Treat., 2016, 57 (19), 8754–8764. DOI: 10.1080/19443994.2015.1025849.
  • [24] MAGAGANE N., MASINDI V., MERCY M., BRENDON M., LILITH K., Facile thermal activation of non-reactive cryptocrystalline magnesite and its application on the treatment of acid mine drainage, J. Environ. Manage., 2018, 236, 499–509. DOI: 10.1016/j.jenvman.2019.02.030.
  • [25] LIN M., LIU Y., LEI S., YE Z., PEI Z., LI B., Applied clay science high-efficiency extraction of Al from coal-series kaolinite and its kinetics by calcination and pressure acid leaching, 2018, 161, 215–224. DOI: 10.1016/j.clay.2018.04.031.
  • [26] NGUEGANG B., MASINDI V., MSAGATI T.A.M., The treatment of acid mine drainage using vertically flowing wetland. Insights into the fate of chemical species, Minerals, 2021, 11 (5), 477. DOI: 10.3390/min11050477.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-efa8b174-6828-4b18-89eb-d29a1ce2726b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.