PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An assessment of the transient effect on helicopter main rotor stability and power demand

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The researched object is a helicopter main rotor with blades of variable geometric twist characteristics. Variable torsion refers to systems of actuators made of shape memory alloys. The presented numerical analyses allow for evaluating both the dynamics of the rotor in transient states, i.e. in the zone between the static phase and the full activation phase and the impact of the change on the pulsation of the amplitude of the necessary power generated by the rotor corresponding the flight state, and thus covering the demand by the disposable power generated by the engine. This study follows a methodology of numerical analyses based on Multi Body Dynamics and the Finite Element Method and uses fluid mechanics elements and algorithms to analyze lift generation, compiled in a single computational environment referring to the same period of time.
Czasopismo
Rocznik
Strony
23--28
Opis fizyczny
Bibliogr. 24 poz., il. kolor., wykr.
Twórcy
  • Faculty of Mechanical Engineering, Lublin University of Technology
  • Faculty of Mechanical Engineering, Lublin University of Technology
  • Faculty of Mechanical Engineering, Lublin University of Technology
  • Faculty of Mechanical Engineering, Lublin University of Technology
Bibliografia
  • [1] ALQAHTANI, A., SHOKROLLAHIHASSANBAROUGH, F., WYSZYNSKI, M.L. Thermodynamic simulation comparison of AVL BOOST and Ricardo WAVE for HCCI and SI engines optimisation. Combustion Engines. 2015, 161(2), 68-72. https://doi.org/10.19206/CE-116893
  • [2] AMEDURI, S., CONCILIO, A. Morphing wings review: aims, challenges, and current open issues of a technology. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2020. https://doi.org/10.1177/0954406220944423
  • [3] BAYRAMOĞLU, K., YILMAZ, S. Emission and performance estimation in hydrogen injection strategies on diesel engines. International Journal of Hydrogen Energy. 2021, 46(57), 29732-29744. https://doi.org/10.1016/j.ijhydene.2020.08.135
  • [4] CARLUCCI, A.P., FICARELLA, A., LAFORGIA, D. et al. Supercharging system behavior for high altitude operation of an aircraft 2-stroke Diesel engine. Energy Conversion and Management. 2015, 101, 470-480. https://doi.org/10.1016/j.enconman.2015.06.009
  • [5] CARLUCCI, A.P., FICARELLA, A., TRULLO, G. Performance optimization of a two-stroke supercharged diesel engine for aircraft propulsion. Energy Conversion and Management. 2016, 122, 279-289. https://doi.org/10.1016/j.enconman.2016.05.077
  • [6] CZYŻ, Z., SIADKOWSKA, K. Measurement of air flow velocity around the unmanned rotorcraft. 2020 IEEE 7th International Workshop on Metrology for AeroSpace (MetroAeroSpace), Pisa. 2020, 625-629. https://doi.org/10.1109/MetroAeroSpace48742.2020.9160062
  • [7] DOPONA, M., FOXHALL, N., DUTZLER, C. 912iS fuel injected aircraft engine. SAE Technical Paper 2012-32-0049. 2012. https://doi.org/10.4271/2012-32-0049
  • [8] FORTINI, A., SUMAN, A., MERLIN, M. et al. Morphing blades with embedded SMA strips: an experimental investigation. Materials and Design. 2015, 85, 785-795. https://doi.org/10.1016/j.matdes.2015.07.175
  • [9] KALWARA, M., KUŹNIAR, M., ORKISZ, M. A rotating piston engine with electric generator in serial hybrid propulsion system for use in light aircraft. Combustion Engines. 2021, 187(4), 42-45. https://doi:10.19206/CE-141353
  • [10] KARDACH, M., GALANT, M., FUĆ, P. Analysis of the ecological effectiveness of passenger transport by jets of various sizes. Combustion Engines. 2019, 178(3), 252-256. https://doi:10.19206/CE-2019-344
  • [11] KOZAK, M., MERKISZ, J., BIELACZYC, P. The effect of fuel properties on exhaust emissions from diesel passenger car. Silniki Spalinowe. 2005, 1(120), 19-30. https://doi.org/10.19206/CE-117408
  • [12] LACHENAL, X., DAYNES, S., WEAVER, P.M. Review of morphing concepts and materials for wind turbine blade applications. Wind Energy. 2013, 16, 283-307. https://doi.org/10.1002/we.531
  • [13] ORKISZ, M., KUŹNIAR, M. 3E - a new paradigm for the development of civil aviation. Combustion Engines. 2020, 181(2), 3-10. https://doi:10.19206/CE-2020-201
  • [14] PANKONIEN, A.M. Smart material wing morphing for unmanned aerial vehicles. University of Michigan. 2015. https://deepblue.lib.umich.edu/handle/2027.42/111533
  • [15] PRAJIT, R., SRIVATSAN, S., SATHWIK, V. Smart materials - a view towards SMA. SAE Technical Paper 2014-28-0045. 2014. https://doi.org/10.4271/2014-28-0045
  • [16] ROY, M.M., TOMITA, E., KAWAHARA, N. et al. An experimental investigation on engine performance and emissions of a supercharged H2-diesel dual-fuel engine. International Journal of Hydrogen Energy. 2010, 35, 844-853. https://doi.org/10.1016/j.ijhydene.2009.11.009
  • [17] SAEED, A.S., YOUNES, A.B., ISLAM, S. et al. A review on the platform design, dynamic modeling and control of hybrid UAVs. International Conference on Unmanned Aircraft Systems. ICUAS, 2015, 806-815. https://doi.org/10.1109/ICUAS.2015.7152365
  • [18] SARKAR, P., RACZYNSKI, R. Gurney flap force calculations. In: Doerffer, P., Barako,s G.N., Luczak M.M. (Eds.) Recent Progress in Flow Control for Practical Flows. Springer. 2017, 126-135. https://doi.org/10.1007/978-3-319-50568-8
  • [19] SEHRA, A.K., WHITLOW, W. Propulsion and power for 21st century aviation. Progress in Aerospace Sciences. 2004, 40(4-5), 199-235. https://doi.org/10.1016/j.paerosci.2004.06.003
  • [20] SIADKOWSKA, K. Aerodynamic measurement of the rotor blade for aviation application. 2020 IEEE 7th International Workshop on Metrology for AeroSpace (MetroAeroSpace). Pisa, 2020, 610-614. https://doi.org/10.1109/MetroAeroSpace48742.2020.9160131
  • [21] SIADKOWSKA, K., CZAJKA, B., ŚCISŁOWSKI, K. et al. Analysis of propulsion units dedicated to test stands for aviation systems. Combustion Engines. 2021, 185(2), 39-43. https://doi.org/10.19206/CE-139405
  • [22] SIADKOWSKA, K., MAJCZAK, A., BARAŃSKI, G. Studying a construction of pistons for the aircraft CI engine. Combustion Engines. 2017, 168(1), 161-167. https://doi.org/10.19206/CE-2017-126
  • [23] SIADKOWSKA, K., RACZYNSKI, R., WENDEKER, M. Numerical analysis of the rotor in the co-simulation methodology. IOP Conference Series: Materials Science and Engineering. 2019, 710(012009). https://doi.org/10.1088/1757-899X/710/1/012009
  • [24] SOFLA, A.Y.N., MEGUID, S.A., TAN, K.T. et al. Shape morphing of aircraft wing: status and challenges. Materials and Design. 2009, 31, 1284-1292. https://doi.org/10.1016/j.matdes.2009.09.011
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-efa6a570-783c-4353-a33e-4328a5bdc6aa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.