PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fly ash plastering mortar: heavy metal leaching rule, coupling mechanism and life cycle carbon reduction

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The application range of fly ash in mortar products is gradually expanding, and the harm of heavy metals and environmental damage are also deepening. This study centers around the plastering mortar prepared from fly ash from three provinces in southwestern China (FA1 in Sichuan, FA2 in Chongqing, and FA3 in Guizhou), and systematically studies its basic properties, heavy metal leaching rule and coupling mechanism, life cycle assessment. The research results indicate that there is a certain regularity between the performance of fly ash plastering mortar and the content of fly ash added, but there is no obvious regularity of different origins in the performance. The experimental results showed that the heavy metal content in fly ash plastering mortar showed a significant trend of gradually decreasing over time. The leaching kinetics fitting results showed that the Parabolic equation model was suitable for the leaching of Cr, the Elovich leaching model was suitable for the leaching of Hg, and the Elovich and Second-order kinetics equations were suitable for the leaching of Cd. In fly ash plastering mortar products, Cr, Cd, and Hg elements exist in the forms of Cr 3+ , Cr 6+ , Cd 2+ , and Hg 2+ . The relative atomic mass of Cr in these two forms is influenced by factors such as the origin, content, and strength grade of fly ash. The occurrence and coupling mechanism of heavy metals in cementitious materials and hydration products were also explored. The results of the life cycle assessment showed that fly ash plastering mortar provides better environmental benefits compared to conventional ones and has a greenhouse effect carbon emissions of about 983 kgCO 2 eq, which can be reduced by approximately 30% compared to conventional plastering mortar.
Rocznik
Strony
art. no. e40, 2024
Opis fizyczny
Bibliogr. 65 poz., rys., wykr.
Twórcy
  • School of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
  • School of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
autor
  • Synthetic Oil Branch of Sinopec Lubricants Co., Ltd, Chongqing 400050, China
Bibliografia
  • 1. Sun J, Li G, Wang Z. Optimizing China’s energy consumption structure under energy and carbon constraints. Struct Chang Econ Dyn. 2018;47:57–72.
  • 2. Sun J, Wang L, Yu J, Guo B, Chen L, Zhang Y, et al. Cytotoxicity of stabilized/solidified municipal solid waste incineration flyash. J Hazard Mater. 2022;424: 127369.
  • 3. Zhang Y, Wang L, Chen L, Ma B, Zhang Y, Ni W, et al. Treatment of municipal solid waste incineration fly ash: state-of-the-art technologies and future perspectives. J Hazard Mater.2021;411: 125132.
  • 4. Zhang Y, Zhou L, Chen L, Guo Y, Guo F, Wu J, et al. Synthesisof zeolite na-p1 from coal fly ash produced by gasification and its application as adsorbent for removal of cr(vi) from water.Front Chem Sci Eng. 2021;15:518–27.
  • 5. Koshy N, Dondrob K, Hu L, Wen Q, Meegoda JN. Synthesisand characterization of geopolymers derived from coal gangue, fly ash and red mud. Constr Build Mater. 2019;206:287–96.
  • 6. Herath C, Gunasekara C, Law DW, Setunge S. Performance of high volume fly ash concrete incorporating additives: a systematic literature review. Constr Build Mater. 2020;258: 120606.
  • 7. Hao J, Dou Z, Zhang T, Wang K, Wan X, Qi S. A clean and efficient utilization of fly ash with a focus on the strengt hening decomposition mechanism of mullite. Fuel. 2023;333: 126473.
  • 8. Bhatt A, Priyadarshini S, Acharath Mohanakrishnan A, Abri A,Sattler M, Techapaphawit S. Physical, chemical, and geotechnical properties of coal fly ash: a global review. Case Stud Constr Mater. 2019;11: e263.
  • 9. Alterary SS, Marei NH. Fly ash properties, characterization, and applications: a review. J K Saud Univ Sci. 2021;33: 101536.
  • 10. Wang L, Zhang Y, Chen L, Guo B, Tan Y, Sasaki K, et al. Designing novel magnesium oxy sulfate cement for stabilization/solidification of municipal solid waste incineration fly ash.J Hazard Mater. 2022;423: 127025.
  • 11. Chen W, Song G, Lin Y, Qiao J, Wu T, Yi X, et al. Synthesis and catalytic performance of linde-type a zeolite (lta) from coal fly ash utilizing microwave and ultrasound collaborative activation method. Catal Today. 2022;397–399:407–18.
  • 12. Zhang J, Dong B, Hong S, Teng X, Li G, Li W, et al. Investigating the influence of fly ash on the hydration behavior of cement using an electrochemical method. Constr Build Mater. 2019;222:41–8.
  • 13. Ren X, Liu S, Qu R, Xiao L, Hu P, Song H, et al. Synthesis and characterization of single-phase submicron zeolite y from coal flyash and its potential application for acetone adsorption. Micropo-rous Mesoporous Mat. 2020;295: 109940.
  • 14. Boycheva S, Zgureva D, Lazarova H, Popova M. Comparative studies of carbon capture onto coal fly ash zeolites na-x and na–ca-x. Chemosphere. 2021;271: 129505.
  • 15. Hou H, Su L, Guo D, Xu H. Resource utilization of solid wastefor the collaborative reduction of pollution and carbon emissions: case study of fly ash. J Clean Prod. 2023;383: 135449.
  • 16. Aquino TFD, Estevam ST, Viola VO, Marques CRM, ZancanFL, Vasconcelos LB, et al. Co2 adsorption capacity of zeolites synthesized from coal fly ashes. Fuel. 2020;276: 118143.
  • 17. Wang C, Liu K, Huang D, Chen Q, Tu M, Wu K, et al. Utilization of fly ash as building material admixture: basic properties and heavy metal leaching. Case Stud Constr Mater. 2022;17: e1422.
  • 18. Nguyen HT, Nguyen HT, Ahmed SF, Rajamohan N, Yusuf M,Sharma A, et al. Emerging waste-to-wealth applications of fly ash for environmental remediation: a review. Environ Res. 2023;227:115800.
  • 19. Lin S, Jiang X, Zhao Y, Yan J. Zeolite greenly synthesized fromfly ash and its resource utilization: a review. Sci Total Environ.2022;851: 158182.
  • 20. Du S, Ge X, Zhao Q. Central composite design-based development of eco-efficient high-volume fly ash mortar. Constr BuildMater. 2022;358: 129411.
  • 21. Ohemeng EA, Naghizadeh A. Alternative cleaner production of masonry mortar from fly ash and waste concrete powder. Constr Build Mater. 2023;374: 130859.
  • 22. Abeysundra UGY, Babel S, Gheewala S, Sharp A. Environmental, economic and social analysis of materials for doors and windows in Sri Lanka. Build Environ. 2007;42:2141–9.
  • 23. Manjunatha M, Preethi S, Malingaraya MHG, Niveditha KN.Life cycle assessment (lca) of concrete prepared with sustainable cement-based materials. Mater Today. 2021;47:3637–44.
  • 24. Gursel AP, Ostertag C. Life-cycle assessment of high-strength concrete mixtures with copper slag as sand replacement. Adv CivEng. 2019;2019:1–13.
  • 25. Orozco CR, Babel S, Tangterm sirikul S, Sugiyama T. Understanding the environmental, economic, and social impact of fly ash utilization on early-age high-strength mass concrete using life cycle analysis. Mater Today. 2023. https://doi.org/10.1016/j.matpr.2023.03.141.
  • 26. Das P, Cheela VRS, Mistri A, Chakraborty S, Dubey B, Barai SV. Performance assessment and life cycle analysis of concrete containing ferrochrome slag and fly ash as replacement materials– a circular approach. Constr Build Mater. 2022;347: 128609.
  • 27. Chen X, Wang H. Life-cycle assessment and multi-criteria performance evaluation of pervious concrete pavement with fly ash. Resour Conserv Recy. 2022;177: 105969.
  • 28. Santos T, Almeida J, Silvestre JD, Faria P. Life cycle assessment of mortars: a review on technical potential and drawbacks. ConstrBuild Mater. 2021;288: 123069.
  • 29. Teixeira ER, Mateus R, Camões A, Branco FG. Quality and durability properties and life-cycle assessment of high volume biomass fly ash mortar. Constr Build Mater. 2019;197:195–207.
  • 30. Dekker E, Zijp MC, van de Kamp ME, Temme EHM, van Zelm R.A taste of the new recipe for life cycle assessment: consequences of the updated impact assessment method on food product lcas.Int J Life Cycle Assess. 2020;25:2315–24.
  • 31. Vignisdottir HR, Ebrahimi B, Booto GK, Born OR, Brattebø H,Wallbaum H, et al. Life cycle assessment of winter road maintenance. Int J Life Cycle Assess. 2020;25:646–61.
  • 32. Morais TG, Teixeira RFM, Domingos T. Regionalization of agri-food life cycle assessment: a review of studies in portugal and recommendations for the future. Int J Life Cycle Assess.2016;21:875–84.
  • 33. Zhang L, Wang J, Feng Y. Life cycle assessment of opencast coal mine production: a case study in yimin mining area in China. Environ Sci Pollut Res Int. 2018;25:8475–86.
  • 34. Lelek L, Kulczycka J. Life cycle assessment of opencast lignite mining. Int J Coal Sci Technol. 2021;8:1272–87.
  • 35. Çetinkaya AY, Bilgili L, Kuzu SL. Life cycle assessment and green house gas emission evaluation from aksaray solid waste disposal facility. Air Qual Atmos Health. 2018;11:549–58.
  • 36. Mulya KS, Zhou J, Phuang ZX, Laner D, Woon KS. A systematic review of life cycle assessment of solid waste management: methodological trends and prospects. Sci Total Environ.2022;831: 154903.
  • 37. Sathre R, González-García S. 14 Life cycle assessment (lca) of wood-based building materials. In: Pacheco-Torgal F, CabezaLF, Labrincha J, de Magalhães A, editors. Eco-efficient Construction and Building Materials. United Kingdom: Wood head Publishing; 2014. p. 311–37.
  • 38. Wang C, Cheng L, Huang Q, Shui Z, Liu Y, Zhao H, et al. Basic performance, heavy metal leaching mechanism and risk assessment analysis of waste concrete. Arch Civ Mech Eng. 2023.https://doi.org/10.1007/s43452-023-00666-y.
  • 39. Wang Q, Li J, Xue Q, Poon CS. Immobilization and recycling of contaminated marine sediments in cement-based materials incorporating iron-biochar composites. J Hazard Mater.2022;435: 128971.
  • 40. Wang C, Chen S, Yang F, Wang A. Study on properties of representative ordinary portland cement: heavy metal risk assessment, leaching release kinetics and hydration coupling mechanism. Constr Build Mater. 2023;385: 131507.
  • 41. Zhu Z, Guo Y, Zhao Y, Zhou T. Carbon reclamation from biogas plant flue gas for immobilizing lead and neutralizing alkalis in municipal solid waste incineration fly ash. Chem Eng J.2022;435: 134812.
  • 42. Da Y, He T, Shi C, Wang M, Feng Y. Potential of preparing cement clinker by adding the fluorine-containing sludge in toraw meal. J Hazard Mater. 2021;403: 123692.
  • 43. Wang D, Wang Q. Clarifying and quantifying the immobilization capacity of cement pastes on heavy metals. Cem Concr Res.2022;161: 106945.
  • 44. Moulin I, Rose J, Stone W, Bottero J, Mosnier F, Haehnel C.Lead, zinc and chromium (iii) and (vi) speciation in hydrated cement phases. In: Woolley GR, Goumans JJJM, Wainwright PJ, editors. Waste. Manag. Ser. 2000, p. 269–80.
  • 45. Trezza MA, Scian AN. Waste with chrome in the Portland cement clinker production. J Hazard Mater. 2007;147:188–96.
  • 46. Murant M, Sorrentino F. Effect of large additions of Cd, Pb, Cr, Zn to cement raw mental on the composition and the properties of the clinker and the cement. Cem Concr Res. 1996:377–85.
  • 47. Li G, Wang S, Wu Q, Li J, Chen Z, Li J, et al. Mercury emission characteristics and mechanism in the raw mill system of cement clinker production. J Hazard Mater. 2022;430: 128403.
  • 48. Du W, Zhang C, Kong X, Zhuo Y. Kinetic study on elemental mercury release from fly ashes and hydrated fly ash cement pastes. Chemosphere. 2020;241: 125028.
  • 49. Qiao G, Hou D, Li W, Yin B, Zhang Y, Wang P. Molecular in sights into migration of heavy metal ion in calcium silicate hydrate (csh) surface and intra-csh (ca/si = 13). Constr Build Mater. 2023;365:130097.
  • 50. Lu L, Xiang C, He Y, Wang F, Hu S. Early hydration of c3s in the presence of cd2+, pb2+ and cr3+ and the immobilization of heavy metals in pastes. Constr Build Mater. 2017;152:923–32.
  • 51. Yang Y, Xue J, Huang Q. Studies on the solidification mechanisms of ni and cd in cement clinker during cement kiln co-processing of hazardous wastes. Constr Build Mater. 2014;57:138–43.
  • 52. Du W, Zhang C, Kong X, Zhuo Y, Zhu Z. Mercury release from fly ashes and hydrated fly ash cement pastes. Atmos Environ.2018;178:11–8.
  • 53. Chi Y, Dong J, Tang Y, Huang Q, Ni M. Life cycle assessment of municipal solid waste source-separated collection and integrated waste management systems in hangzhou, china. J Mater Cycles Waste Manag. 2015;17:695–706.
  • 54. Li C, Cui S, Nie Z, Gong X, Wang Z, Itsubo N. The lca of portland cement production in china. Int J Life Cycle Assess.2015;20:117–27.
  • 55. Çankaya S. Investigating the environmental impacts of alternative fuel usage in cement production: a life cycle approach. Environ Dev Sustain. 2020;22:7495–514.
  • 56. Hyder Z, Ripepi NS, Karmis ME. A life cycle comparison of green house emissions for power generation from coal mining and underground coal gasification. Mitig Adapt Strateg Glob Chang.2016;21:515–46.
  • 57. Zhou A, Hu J, Wang K. Carbon emission assessment and control measures for coal mining in china. Environ Earth Sci. 2020.https://doi.org/10.1007/s12665-020-09189-8.
  • 58. Zheng S, Lu X, Zhao J, He R, Chen H, Geng Y. Influence of industrial by-product sulfur powder on properties of cement-based composites for sustainable infrastructures. Constr Build Mater.2023;367: 130171.
  • 59. He R, Yang Z, Gan VJL, Chen H, Cao D. Mechanism of nano-silica to enhance the robustness and durability of concrete in lowair pressure for sustainable civil infrastructures. J Clean Prod.2021;321: 128783.
  • 60. Zheng S, Qi L, He R, Wu J, Wang Z. Erosion damage and expansion evolution of interfacial transition zone in concrete underdry-wet cycles and sulfate erosion. Constr Build Mater. 2021;307:124954.
  • 61. Shen B, Yang X, Xu Y, Ge W, Liu G, Su X, et al. Can carbon emission trading pilot policy drive industrial structure low-carbon restructuring: new evidence from china. Environ Sci Pollut ResInt. 2023;30:41553–69.
  • 62. Yang X, Su X, Ran Q, Ren S, Chen B, Wang W, et al. Assessing the impact of energy internet and energy misallocation on carbon emissions: new in sights from china. Environ Sci Pollut Res Int.2022;29:23436–60.
  • 63. Burchart-Korol D, Fugiel A, Czaplicka-Kolarz K, Turek M. Model of environmental life cycle assessment for coal mining operations. Sci Total Environ. 2016;562:61–72.
  • 64. Guo X, Li Y, Shi H, She A, Guo Y, Su Q, et al. Carbon reduction in cement industry - an indigenized questionnaire on environmental impacts and key parameters of life cycle assessment (lca) inchina. J Clean Prod. 2023;426: 139022.
  • 65. Yang X, Feng Y, Rong H, Liang J, Zhang G, Huang Y. The leaching-deterioration properties and leaching mechanism of cement mortar under dry-wet cycles. Constr Build Mater. 2023;400:132672.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-efa5d18d-e335-4cd5-a057-69427361f832
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.