PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of sinkhole hazard in the post-mining area using the ERT method and numerical modeling

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The loss of stability of shallow voids existing in the rock mass often results in the formation of sinkholes on the surface. This has a significant impact on the threat to public safety. Therefore, it is crucial to recognize the presence of such voids, especially in old post-mining areas, where shallow extraction was previously conducted, and there is a lack of mapping documentation indicating the location of underground workings. This paper presents an example illustrating a proposed procedure for recognizing shallow voids, which consists of two research works: geophysical research combined with numerical analyzes used as a kind of forward modeling. This combination increases the possibility of accurately locating potential sinkhole occurrences. The first part of this article provides selected literature information on the occurrence of sinkhole hazards. The second part presents the results of subsurface layer investigations of the rock mass conducted using electrical resistivity tomography (ERT). The third part focuses on assessing the threat of sinkhole formation by using forward numerical modeling performed with the FLAC 3D software to confirm the subsurface structures identified through the ERT method. The results of the analyzes conducted with both methods are then discussed in terms of their suitability for assessing the associated risk. The research conducted within the framework of this study confirms the effectiveness of the ERT method combined with numerical modeling for evaluating the state of the rock mass. This method can be considered a valuable tool for supporting decision-making in identifying post-mining areas that are particularly at risk of sinkhole formation.
Rocznik
Strony
20--34
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
  • Silesian University of Technology, Faculty of Mining, Safety Engineering and Industrial Automation 2a Akademicka St., 44-100 Gliwice, Poland
  • Silesian University of Technology, Faculty of Mining, Safety Engineering and Industrial Automation 2a Akademicka St., 44-100 Gliwice, Poland
  • Silesian University of Technology, Faculty of Mining, Safety Engineering and Industrial Automation 2a Akademicka St., 44-100 Gliwice, Poland
Bibliografia
  • 1. Baluch, K., Kim, J.-G., Kim, J.-G., Ko, Y.-H., Jung, S.-W. & Baluch, S.Q. (2022) Assessment of sinkholes investigations in Jangseong-Gun area, South Korea, and recommendations for similar studies. International Journal of Environmental Research and Public Health 19(3), 1111, doi: 10.3390/ijerph19031111.
  • 2. Bell, F.G. (1988) Land development. State of the art in the location of old mine shafts. Bulletin of the International Association of Engineering Geology 37, pp. 91–98, doi: 10.1007/BF02590374.
  • 3. Cardarelli, E., Marrone, C. & Orlando, L. (2003) Evaluation of tunnel stability using integrated geophysical methods. Journal of Applied Geophysics 52(2), pp. 93–102, doi: 10.1016/S0926-9851(02)00242-2.
  • 4. Chudek, M., Janusz, W. & Zych, J. (1988) Study on diagnosis and prognosis of the formation of discontinuous deformation due to underground mining. Scientific Journal of Silesian University of Technology, Gliwice, vol. 141, no. 165 (in Polish).
  • 5. Didier, C. (2009) Postmining management in France: situation and perspectives. Risk Analysis 29(10), pp. 1347–1354, doi: 10.1111/j.1539-6924.2009.01258.x.
  • 6. Dursun, A.E. (2022) Risk analysis of natural sinkholes hazards in Karapınar basin (Konya, Turkey). Arabian Journal of Geosciences 15(3), 279, doi: 10.1007/s12517-022-09564-8.
  • 7. Fajklewicz, Z. (2007) Applied Gravimetry. Kraków: AGH University of Science and Technology Press.
  • 8. Fajklewicz, Z., Piwowarski, W., Radomiński, J., Stawarski, E. & Tajduś, A. (2004) Badanie deformacji w górotworze w celu odtwarzania wartości budowlanej terenów pogórniczych. Kraków: Wyd. AGH (In Polish).
  • 9. Fu, Y., Shang, J., Hu, Z., Li, P., Yang, K., Chen, C., Guo, J. & Yuan, D. (2021) Ground fracture development and surface fracture evolution in N00 method shallowly buried thick coal seam mining in an arid windy and sandy area: A case study of the Ningtiaota mine (China). Energies 14(22), 7712, doi: 10.3390/en14227712.
  • 10. GF Instruments (2021) ARES II – Automatic Resistivity and IP System, Brno, Czech Republic. [Online]. Available from: http://www.gfinstruments.cz [Accessed: March 30, 2021].
  • 11. Guo, Z.M., Zhang, L., Ma, Z., Zhong, F., Yu, J. & Wang, S. (2019) Numerical investigation of the influence of roof fracturing angle on the stability of gob-side entry subjected to dynamic loading. Shock and Vibration 2019, 1434135, doi: 10.1155/2019/1434135.
  • 12. Harro, D. & Kiflu, H. (2018) Imaging of Deep Sinkholes Using the Multi-electrode Resistivity Implant Technique (MERIT) Case Studies in Florida. National Cave and Karst Research Institute Symposium 7, pp. 341–345, doi: 10.5038 /9780991000982.1026.
  • 13. Hassanlourad, M., Naghizadehrokni, M. & Molaei, V.A. (2019) A numerical study of seismic response of shallow square tunnels in two-layered ground. International Journal of Geological and Environmental Engineering 13(3), pp. 167–174.
  • 14. Hu, B. & Wang, Ch. (2019) Ground surface settlement analysis of shield tunneling under spatial variability of multiple geotechnical parameters. Heliyon 6(9), e02495, doi: 10.1016/j.heliyon.2019.e02495.
  • 15. Hunter, J. (2015) Old mines and new sinkholes along the Hucklow Edge vein, Derbyshire. Mercian Geologist 18(4), pp. 213–226.
  • 16. Itasca Consulting Group (2009) FLAC 3D User’s Guide. Minneapolis.
  • 17. Kong, P., Jiang, L., Jiang, J., Wu, Y., Chen, L. & Ning, J. (2019) Numerical analysis of roadway rock-burst hazard under superposed dynamic and static loads. Energies 12(19), 3761, doi: 10.3390/en12193761.
  • 18. Kowalski, A. (2015) Deformacje powierzchni w Górnośląskim Zagłębiu Węglowym. Katowice: Główny Instytut Górnictwa.
  • 19. Kretschmann, J., Efremenkov, A. & Khoreshok, A. (2017) From mining to post-mining: the sustainable development strategy of the German hard coal mining industry. IOP Conference Series: Earth and Environmental Science 50, 012024. doi: 10.1088/1755-1315/50/1/012024.
  • 20. Lago, A.L., Borges, W.R., Barros, J.S. & de Sousa Amaral, E. (2022) GPR application for the characterization of sinkholes in Teresina, Brazil. Environmental Earth Sciences 81, 132, doi: 10.1007/s12665-022-10265-4.
  • 21. Loke, M.H. & Barker, R.D. (1996) Practical techniques for 3D resistivity surveys and data inversion. Geophysical Prospecting 44(3), pp. 499–523, doi: 10.1111/j.1365-2478.1996. tb00162.x.
  • 22. Loke, M.H. (2013) RES2DINV – Geoelectrical Imaging 2D & 3D, a practical guide to 2-D and 3-D surveys. Malaysia 1997–2000. Geotomo software, Malaysia.
  • 23. Łój, M. (2014) Microgravity monitoring discontinuous terrain deformation in a selected area of shallow coal extraction. In Proceedings of the 14th International Multidisciplinary Scientific GeoConference SGEM, Albena, Bulgary, Vol. 1, pp. 521–528.
  • 24. Łój, M. & Porzucek, S. (2019) Detailed analysis of the gravitational effects caused by the buildings in microgravity survey. Acta Geophysica 67, pp. 1799–1807, doi: 10.1007/ s11600-019-00336-9.
  • 25. Madej, J. (2017) Gravity surveys for assessing rock mass condition around a mine shaft. Acta Geophysica 65, pp. 465–479, doi: 10.1007/s11600-017-0043-8.
  • 26. Monjezi, M., Babak, N.F., Seyed, R.T. & Trilok, N.S. (2012) Stability analysis of a shallow depth metro tunnel: a numerical approach. Archives of Mining Sciences 57(3), pp. 535–545, doi: 10.2478/v10267-012-0035-0.
  • 27. Oliver-Cabrera, T., Wdowinski, S., Kruse, S. & Robinson, T. (2022) Detection of sinkhole activity in West-Central Florida using InSAR time series observations. Remote Sensing of Environment 269, 112793, doi: 10.1016/j. rse.2021.112793.
  • 28. Pilecki, Z. (2008) The role of geophysical methods in the estimation of sinkhole threat in the post-mining areas of shallow exploitation in the Upper Silesian Coal Basin, Poland. Mineral Resources Management 24(3/1), pp. 27–40.
  • 29. Pringle, J.K., Styles, P., Howell, C.P., Branston, M.W., Furner, R. & Toon, S.M. (2012) Long-term time-lapse microgravity and geotechnical monitoring of relict salt mines, Marston, Cheshire, UK. Geophysics 77(6), pp. 287–294, doi: 10.1190/geo2011-0491.1.
  • 30. Prusek, S. & Bock, S. (2008) Assessment of rock mass stresses and deformations around mine workings based on three-dimensional numerical modeling. Archives of Mining Sciences 53(3), pp. 349–360.
  • 31. Strzałkowski, P. (2019) Sinkhole formation hazard assessment. Environmental Earth Sciences 78(1), 9, doi: 10.1007/ s12665-018-8002-5.
  • 32. Strzałkowski, P. (2021) The influence of selected mining and natural factors on the sinkhole creation hazard based on the case study. Environmental Earth Sciences 80, 117, doi: 10.1007/s12665-021-09403-1.
  • 33. Strzałkowski, P. & Litwa, P. (2020) Environmental protection problems in the areas of former mines with emphasis on sinkholes: selected examples. International Journal of Environmental Science and Technology 18, pp. 771–780, doi: 10.1007/s13762-020-02860-4.
  • 34. Strzałkowski, P., Ścigała, R., Szafulera, K. & Kołodziej, K. (2021) Surface deformations resulting from abandoned mining excavations. Energies 14(9), 2495, doi: 10.3390/en14092495.
  • 35. Tihansky, A.B. (1999) Sinkholes West-Central Florida. A link between surface water and ground water. In: Galloway, D.L., Jones, D.R., Ingebrtsen, S.E. Land Subsidence in the United States. U.S. Geological Survey, Circular 1182, pp. 121–140.
  • 36. Tufano, R., Guerriero, L., Annibali Corona, M., Bausilio, G., Di Martire, D., Nisio, S. & Calcaterra, D. (2022) Anthropogenic sinkholes of the city of Naples, Italy: an update. Natural Hazards 112, pp. 2577–2608, doi: 10.1007/ s11069-022-05279-x.
  • 37. Van Schoor, M. (2002) Detection of sinkholes using 2D electrical receptivity imaging. Journal of Applied Geophysics 50(4), pp. 393–399, doi: 10.1016/S0926-9851(02)00166- 0.
  • 38. Vennari, C. & Parise, M.A. (2022) Chronological database about natural and anthropogenic sinkholes in Italy. Geosciences 12(5), 200, doi: 10.3390/geosciences12050200.
  • 39. Zhou, Y., Zhao, L., Cao, J. & Wang, Y. (2022) Using an improved SWAT model to simulate karst sinkholes: A case study in Southwest China. Frontiers in Environmental Science 10, 950098, doi: 10.3389/fenvs.2022.950098.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-efa10845-65c1-471a-b88b-5b9f267b1b0c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.