PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling of porous metal-organic framework (MOF) materials used in catalysis

Identyfikatory
Warianty tytułu
PL
Modelowanie porowatych materiałów metaloorganicznych (MOF) stosowanych w katalizie
Języki publikacji
EN
Abstrakty
EN
This paper presents a review of modern modelling of porous materials such as metal-organic frameworks used in catalysis. The authors’ own research approach using the nano-design of metal-organic frameworks is included in this review.
PL
W niniejszym artykule przedstawiamy przegląd nowoczesnego modelowania materiałów porowatych, takich jak struktury metaloorganiczne, stosowanych w katalizie. Uwzględnione zostały również nasze własne prace badawcze wykorzystujące projektowanie struktur metaloorganicznych.
Rocznik
Strony
art. no. e2020012
Opis fizyczny
Bibliogr. 151 poz., wz., rys.
Twórcy
  • Institute of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology
  • Institute of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology
Bibliografia
  • Abrahams, B.F., Hoskins, B.F., Michail, D.M., Robson, R. (1994). Assembly of porphyrin building blocks into network structures with large channels. Nature, 369, 727–729. https://doi.org/10.1038/369727a0
  • Alaerts, L., Seguin, E., Poelman, H., Thibault-Starzyk, F., Jacobs, P.A., De Vos, D.E. (2006). Probing the Lewis Acidity and Catalytic Activity of the Metal–Organic Framework [Cu3 (btc)2] (BTC=Benzene-1,3,5-tricarboxylate). Chemistry. A European Jurnal, 12, 7353–7363. https://doi.org/10.1002/chem.200600220
  • Al-Kutubi, H., Gascon, J., Sudholter, E.J.R., Rassaei, L. (2014). Electrosynthesis of Metal–Organic Frameworks: Challenges and Opportunities. Chemelektrochem, 2, 462–474. https://doi.org/10.1002/celc.201402429
  • Banerjee, D., Finkelstein, J., Smirnov, A., Forster, P.M., Borkowski, L.A., Teat, S.J., Parise, J.B. (2011). Synthesis and Structural Characterization of Magnesium Based Coordination Networks in Different Solvents. Crystal Growth & Design, 11(6), 2572–2579. http://doi.org/10.1021/cg200327y
  • Barthelet, K., Marrot, J., Riou, D., Ferey, G. (2002). A Breathing Hybrid Organic Inorganic Solid with Very Large Pores and High Magnetic Characteristics. Angewandte Chemie International Edition, 41(2), 281–284. https://doi.org/10.1002/1521-3773(20020118)41:2<281::AID-ANIE281>3.0.CO;2-Y
  • Barthelet, K., Riou, D., Férey, G. (2002). [VIII(H2O)]3O(O2CC6H4CO2)3•(Cl,9H2O) (MIL-59): a rare example of vanadocarboxylate with a magnetically frustrated three-dimensional hybrid framework. Chemical Communications, (14), 1492–1493. https://doi.org/10.1039/B202749F
  • Becke, A.D., (2014). Perspective: Fifty years of density-functional theory in chemical physics. The Journal of Chemical Physics, 140(18), 18A301. https://doi.org/10.1063/1.4869598
  • Beldon, P.J., Fabian, L., Stein, R.S, Thirumurugan, A., Cheetham, A.K., Fricic, T. (2010). Rapid Room-Temperature Synthesis of Zeolitic Imidazolate Frameworks by Using Mechanochemistry. Angewandte Chemie International Edition, 49, 9640–9643. https://doi.org/10.1002/anie.201005547
  • Bernales, V., Ortuño, M.A., Truhlar, D.G., C. J. Cramer, C.J., Gagliardi, L. (2018). Computational Design of Functionalized Metal-Organic Framework Nodes for Catalysis. ACS Central Science, 4(1), 5–19. https://doi.org/10.1021/acscentsci.7b00500
  • Bosch, M., Zhang, M., Zhou, H-C. (2014). Increasing the Stability of Metal-Organic Frameworks. Advances in Chemistry, 2014, 1–8. https://doi.org/10.1155/2014/182327
  • Bromberg, L., Diao, Y., Wu, H., Speakman, S.A., Hatton, T.A. (2012). Chromium(III) Terephthalate Metal Organic Framework (MIL-101): HF-Free Synthesis, Structure, Polyoxometalate Composites, and Catalytic Properties. Chemistry of Materials, 24(9), 1664–1675. https://doi.org/10.1021/cm2034382
  • Burnett, B.J., Barron, P.M., Hu, C., Choe, W. (2011). Stepwise Synthesis of Metal-Organic Frameworks: Replacement of Structural Organic Linkers. Journal of the American Chemical Society, 133(26), 9984–9987. https://doi.org/10.1021/ja201911v
  • Bux, H., Liang, F., Li, Y., Cravillon, J., Wiebcke, M., Caro, J. (2009). Zeolitic Imidazolate Framework Membrane with Molecular Sieving Properties by Microwave-Assisted Solvothermal Synthesis. Journal of the American Chemical Society, 131(44), 16000–16001. https://doi.org/10.1021/ja907359t
  • Cai, Y., Kulkarni, A.R., Huang, Y-G., Sholl, D.S., Walton, K.S., (2014). Control of Metal-Organic Framework Crystal Topology by Ligand Functionalization: Functionalized HKUST-1 Derivatives. Crystal Growth & Design, 14, 6122–6128. https://doi.org/10.1021/cg501285q
  • CCDC. Access Structure. Retrieved form https://www.ccdc.cam.ac.uk/structures/ (date of access: 2020/03/19).
  • Chen, B., Ockwig, N.W., Millward, A.R., Contreras, D.S., Yaghi, O.M. (2005). High H2 Adsorption in a Microporous Metal-Organic Framework with Open Metal Sites. Angewandte Chemie International Edition, 44, 4745–4749. https://doi.org/10.1002/anie.200462787
  • Chizallet, C., Lazare, S., Bazer-Bachi, D., Bonnier, F., Lecocq, V., Soyer, E., Quoineaud, A.A., Bats, N. (2010). Catalysis of Transesterification by a Nonfunctionalized Metal-Organic Framework: Acido-Basicity at the External Surface of ZIF-8 Probed by FTIR and ab Initio Calculations. Journal of the American Chemical Society, 132(35), 12365–12377. https://doi.org/10.1021/ja103365s
  • Chui, S. S-Y., Lo, S. M-F., Charmant, J.P.H., Orpen, A.G., Williams, I.D. (1999). A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n. Science, 283, 1148–1150. https://doi.org/10.1126/science.283.5405.1148
  • Cohen, A.J., Mori-Sanchez, P., Yang, W. (2012). Challenges for Density Functional Theory. Chemical Reviews, 112(1), 289–320. https://doi.org/10.1021/cr200107z
  • Coudert, F.X., Fuchs, A.H. (2016). Computational characterization and prediction of metal-organic framework properties. Coordination Chemistry Reviews, 307, 211–236. https://doi.org/10.1016/j.ccr.2015.08.001
  • Cramer, C.J., Truhlar, D.G. (2009). Density functional theory for transition metals and transition metal chemistry. Physical Chemistry Chemical Physics, 11, 10757–10816. https://doi.org/10.1039/B907148B
  • Dan-Hardi, M., Serre, C., Frot, T., Rozes, L., Maurin, G., Sanchez, C., Ferey, G. (2009). A New Photoactive Crystalline Highly Porous Titanium(IV) Dicarboxylate. Journal of the American Chemical Society, 131(31), 10857–10859. https://doi.org/10.1021/ja903726m
  • DeCoste, J.B., Demasky, T.J., Katz, M.J., Farha, O.K., Hupp, J.T. (2015). A UiO-66 analogue with uncoordinated carboxylic acids for the broad-spectrum removal of toxic chemicals. New Journal of Chemistr, 39, 2396–2399. https://doi.org/10.1039/C4NJ02093F
  • Dey, C., Kundu, T., Biswal, B.P., Mallick, A., Banerjee, R. (2014). Crystalline metal-organic frameworks (MOFs): synthesis, structure and function. Acta Crystallographica Section B, 70, 3–10. https://doi.org/10.1107/S2052520613029557
  • Dhakshinamoorthy, A., Alvaro, M., Chevreau, H., Horcajada, P., Devic, T., Serre, C., Garcia, H. (2012). Iron(III) metal-organic frameworks as solid Lewis acids for the isomerization of α-pinene oxide. Catalysis Science Technology, 2, 324–330. https://doi.org/10.1039/C2CY00376G
  • Dhakshinamoorthy, A., Alvaro, M., Garcia, H. (2010). Claisen-Schmidt Condensation Catalyzed by Metal-Organic Frameworks. Advanced Synthesis & Catalysis, 352, 711–717. https://doi.org/10.1002/adsc.200900747
  • Dhakshinamoorthy, A., Alvaro, M., Garcia, H. (2010). Metal-Organic Frameworks as Efficient Heterogeneous Catalysts for the Regioselective Ring Opening o Epoxides. Chemistry A European Journal, 16, 8530–8536. https://doi.org/10.1002/chem.201000588
  • Dinca, M., Yu, A.F., Long, J.R., (2006). Microporous Metal-Organic Frameworks Incorporating 1,4-Benzeneditetrazolate: Syntheses, Structures, and Hydrogen Storage Properties [J. Am. Chem. Soc. 2006, 128, 8904−8913]. Journal of the American Chemical Society, 128(51), 17153–17153. https://doi.org/10.1021/ja068019a
  • Dong, X., Liu, X., Chen, Y., Zhang, M. (2018). Screening of bimetallic M-Cu-BTC MOFs for CO2 activation and mechanistic study of CO2 hydrogenation to formic acid: A DFT study. Journal of CO₂ Utilization, 24, 64–72. https://doi.org/10.1016/j.jcou.2017.11.014
  • Du, M., Li, C.P., Zhao, X.J. (2006). Metal-Controlled Assembly of Coordination Polymers with the Flexible Building Block 4-Pyridylacetic Acid (Hpya). Crystal Growth & Design, 6(1), 335–341. https://doi.org/10.1021/cg0502542
  • Eddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., O’Keeffe, M., Yaghi, M.O. (2002). Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage. Science, 295, 469–472. https://doi.org/10.1126/science.1067208
  • Eddaoudi, M., Moler, D.B., Li, H., Chen, B., Reineke, T.M., O’Keeffe, M., Yaghi, O.M., (2001). Modular Chemistry: Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal-Organic Carboxylate Frameworks. Accounts of Chemical Research, 34(4), 319–330. https://doi.org/10.1021/ar000034b
  • Evans, J.D., Fraux, G., Gaillac, R., Kohen, D., Trousselet, F., Vanson, J.M., Coudert, F.X. (2017). Computational Chemistry Methods for Nanoporous Materials. Chemistry of Materials, 29(1), 199–212. https://doi.org/10.1021/acs.chemmater.6b02994
  • Fang, H., Demir, H., Kamakoti, P., Sholl, D.S., (2014). Recent developments in first-principles force fields for molecules in nanoporous materials. Journal of Materials Chemistry A, 2, 274–291. https://doi.org/10.1039/C3TA13073H
  • Farha, O.K., Hupp, J.T. (2010). Rational Design, Synthesis, Purification, and Activation of Metal-Organic Framework Materials. Accounts Of Chemical Research, 43(8), 1166–1175. https://doi.org/10.1021/ar1000617
  • Farha, O.K., Yazaydın, A.O., Eryazici, I., Malliakas, C.D., Hauser, B.G., Kanatzidis, M.G., Nguyen, S.T., Snurr, R.Q., Hupp, J.T. (2010). De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities. Nature Chemistry, 2, 944–948. https://doi.org/10.1038/nchem.834
  • Farrusseng, D., Aguado, S., Pinel, C. (2009). Metal-Organic Frameworks: Opportunities for Catalysis. Angewandte Chemie International Edition, 48, 7502–7513. https://doi.org/10.1002/anie.200806063
  • Farrusseng, D., Daniel, C., Gaudillere, C., Ravon, U., Schuurman, Y., Mirodatos, C., Dubbeldam, D., Frost, H., Snurr, R.Q. (2009). Heats of Adsorption for Seven Gases in Three Metal-Organic Frameworks: Systematic Comparison of Experiment and Simulation. Langmuir, 25(13), 7383–7388. https://doi.org/10.1021/la900283t
  • Ferey, G. (2008). Hybrid porous solids: past, present, future. Chemical Society Reviews, 37, 191–214. https://doi.org/10.1039/B618320B
  • Ferey, G., Mellot-Draznieks, C., Serre, C., Millange, F., Dutour, J., Surble, S., Margiolaki, I., (2005). A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area. Science, 309, 2040–2042. https://doi.org/10.1126/science.1116275
  • Ferey, G., Serre, C., Mellot-Draznieks, C., Millange, F., Surble, S., Dutour, J., Margiolaki, I. (2004). A Hybrid Solid with Giant Pores Prepared by a Combination of Targeted Chemistry, Simulation, and Powder Diffraction. Angewandte Chemie International Edition, 43, 6296–6301. https://doi.org/10.1002/anie.200460592
  • First, E.L., Floudas, C.A. (2013). MOFomics: Computational pore characterization of metal-organic frameworks. Microporous and Mesoporous Materials, 2013(165), 32–39. https://doi.org/10.1016/j.micromeso.2012.07.049
  • Friscic, T., Reid, D.G., Halasz, I., Stein, R.S., Dinnebier, R.E., Duer, M.J. (2010). Ion- and Liquid-Assisted Grinding: Improved Mechanochemical Synthesis of Metal-Organic Frameworks Reveals Salt Inclusion and Anion Templating. Angewandte Chemie International Edition, 49, 712–715. https://doi.org/10.1002/anie.200906583
  • Frost, H., Snurr, R.Q. (2007). Design Requirements for Metal-Organic Frameworks as Hydrogen Storage Materials. The Journal of Physical Chemistry C, 111(50), 18794–18803. https://doi.org/10.1021/jp076657p
  • Fujita, M., Kwon, Y.J., Washizu, S., Ogura, K. (1994). Preparation, Clathration Ability, and Catalysis of a Two-Dimensional Square Network Material Composed of Cadmium(II) and 4,4’-Bipyridine. Journal of the American Chemical Society, 116(3), 1151–115. https://doi.org/10.1021/ja00082a055
  • Garay, A.L., Pichona, A., James, S.L. (2007). Solvent-free synthesis of metal complexes. Chemical Society Reviews, 36, 846–855. https://doi.org/10.1039/b600363j
  • Gascon, J., Corma, A., Kapteijn, F., Llabrés i Xanema, F.X. (2014). Metal Organic Framework Catalysis: Quo vadis? ACS Catalysis, 4(2), 361–378. https://doi.org/10.1021/cs400959k
  • Getman, R.B., Bae, Y.S., Wilmer, C.E., Snurr, R.Q. (2012). Review and Analysis of Molecular Simulations of Methane, Hydrogen, and Acetylene Storage in Metal-Organic Frameworks. Chemical Reviews, 112(2), 703–723. https://doi.org/10.1021/cr200217c
  • Goesten, M.G., Magusin, P.C.M.M., Pidko, E.A., Mezari, B., Hensen, E.J.M., Kapteijn, F., Gascon, J. (2014). Molecular Promoting of Aluminum Metal-Organic Framework Topology MIL-101 by N,N‑Dimethylformamide. Inorganic Chemistry, 53(2), 882–887. https://doi.org/10.1021/ic402198a
  • Ha, N.T.T., Lefedova, O.V., Ha, N.N. (2016). Theoretical Study on the Adsorption of Carbon Dioxide on Individual and Alkali-Metal Doped MOF-5s. Russian Journal of Physical Chemistry A, 90, 220–225. https://doi.org/10.1134/S0036024415120201
  • Hall, J.N., Bollini, P., (2019). Structure, characterization, and catalytic properties of open-metal sites in metal organic frameworks. Reaction Chemistry Engineering, 4, 207–222. https://doi.org/10.1039/C8RE00228B
  • Halper, S.R., Do, L., Stork, J.R., Cohen, S.M. (2006). Topological Control in Heterometallic Metal-Organic Frameworks by Anion Templating and Metalloligand Design. Journal of the American Chemical Society, 128(47), 15255–15268. https://doi.org/10.1021/ja0645483
  • Hayashi, H., Côté, A.P., Furukawa, H., O’Keeffe, M., Yaghi, O.M., (2007). Zeolite A imidazolate frameworks. Nature Materials, 6, 501–506. https://doi.org/10.1038/nmat1927
  • Hendona, C.H., Walsh, A, (2015). A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n. Chemical Science, 6, 3674–3683. https://doi.org/10.1039/C5SC01489A
  • Henschel, A., Gedrich, K., Kraehnert, R., Kaskel, S. (2008). Catalytic properties of MIL-101. Chemical Communications, (35), 4192–4194. https://doi.org/10.1039/B718371B
  • Hoffmann, F., Fröba, M. (2016). Network Topology. In S. Keskel (Ed.), The Chemistry of Metal-Organic Frameworks, (p. 5-38). Weinheim, Germany.
  • Hohenberg, P., Kohn, W. (1964). Inhomogeneous Electron Gas. Physical Review, 136, B864. https://doi.org/10.1103/PhysRev.136.B864
  • Horcajada, P., Surble, S., Serre, C., Hong, D.Y., Seo, Y.K., Chang, J.S., Greneche, J.M., Margiolaki, I., Ferey, G. (2007). Synthesis and catalytic properties of MIL-100(Fe), an iron(III) carboxylate with large pores. Chemical Communications, (27), 2820–2822. https://doi.org/10.1039/B704325B
  • Hoskins, B. F., Robson, R. (1990). Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4,4’,4’’,4’’’-tetracyanotetraphenylmethane]BF4•xC6H5NO2. Journal of the American Chemical Society, 112(4), 1546–1554. https://doi.org/10.1021/ja00160a038
  • Hupp, J.T., Poeppelmeier, K.R. (2005), Better Living Through Nanopore Chemistry. Science, 2005(309), 2008–2009. https://doi.org/10.1126/science.1117808
  • Hwang, Y.K., Hong, D.Y., Chang, J.S., Jhung, S.H., Seo, Y.K., Kim, J., Vimont, A., Daturi, M., Serre C., Ferey, G. (2008). Amine Grafting on Coordinatively Unsaturated Metal Centers of MOFs: Consequences for Catalysis and Metal Encapsulation. Angewandte Chemie International Edition, 47, 4144–4148. https://doi.org/10.1002/anie.200705998
  • Hwang, Y.K., Hong, D.Y., Chang, J.S., Seo, H., Yoon, M., Kim, J., Jhung, S.H., Serre, C., Ferey, G. (2009). Selective sulfoxidation of aryl sulfides by coordinatively unsaturated metal centers in chromium carboxylate MIL-101. Applied Catalysis A: General, 358, 249–253. https://doi.org/10.1016/j.apcata.2009.02.018
  • Janiak, C., Vieth, J.K. (2010). MOFs, MILs and more: concepts, properties and applications for porous coordination networks (PCNs). New Journal of Chemistry, 34, 2366–2388. https://doi.org/10.1039/C0NJ00275E
  • Joaristi, A.M., Juan-Alcañiz, J., Serra-Crespo, P., Kapteijn, F., Gascon, J. (2012). Electrochemical Synthesis of Some Archetypical Zn2+, Cu2+, and Al3+ Metal Organic Frameworks. Crystal Growth & Design, 12(7), 3489–3498. https://doi.org/10.1021/cg300552w
  • Jung, D.W., Yang, D.A., Kim, J., Kim, J., Ahn, W.S. (2010). Facile synthesis of MOF-177 by a sonochemical method using 1-methyl-2-pyrrolidinone as a solvent. Dalton Transactions, 39, 2883–2887. https://doi.org/10.1039/b925088c
  • Kang, Y.S., Lu, Y., Chen, K., Zhao, Y., Wang, P., Sun, W.Y. (2019). Metal-organic frameworks with catalytic centers: From synthesis to catalytic application. Coordination Chemistry Reviews, 378, 262–280. https://doi.org/10.1016/j.ccr.2018.02.009
  • Kaye, S.S., Long, J.R. (2008). Matrix Isolation Chemistry in a Porous Metal-Organic Framework: Photochemical Substitutions of N2 and H2 in Zn4O[(ƞ6-1,4-Benzenedicarboxylate)Cr(CO)3]3. Journal of the American Chemical Society, 130, 806–807. https://doi.org/10.1021/ja7102108
  • Khan, N.A., Lee, J.S., Jeon, J., Jun, C.H., Jhung, S.H. (2012). Phase-selective synthesis and phase-conversion of porous aluminum-benzenetricarboxylates with microwave irradiation. Microporous and Mesoporous Materials, 152, 235–239. https://doi.org/10.1016/j.micromeso.2011.11.025
  • Kim, J., Bhattacharjee, S., Jeong, K.E., Jeong, S.Y., Ahn, W.S. (2009). Selective oxidation of tetralin over a chromium terephthalate metal organic framework, MIL-101. Chemical Communications, (26), 3904–3906. https://doi.org/10.1039/B902699A
  • Kitagawa, S., Kondo, M. (1998). Functional Micropore Chemistry of Crystalline Metal Complex-Assembled Compounds. Bulletin of the Chemical Society of Japan, 71, 1739–1753. https://doi.org/10.1246/bcsj.71.1739
  • Klinowski, J., Paz, F.A.A., Silva, P., Rocha, J. (2011). Microwave-Assisted Synthesis of Metal-Organic Frameworks. Dalton Transactions, 40, 321–330. https://doi.org/10.1039/C0DT00708K
  • Kohn, W., Becke, A.D., Parr, R.G. (1996). Density Functional Theory of Electronic Structure. The Journal of Physical Chemistry, 100(31), 12974–12980. https://doi.org/10.1021/jp960669l
  • Kohn, W., Sham, L.J. (1965). Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review, 140, A1133. https://doi.org/10.1103/PhysRev.140.A1133
  • Kondo, M., Yoshitomi, T., Seki, K., Matsuzaka, H., Kitagawa, S. (1997). Three-Dimensional Framework with Channeling Cavities for Small Molecules: {[M2(4,4′‐bpy)3(NO3)4]•xH2O}n (M = Co, Ni, Zn). Angewandte Chemie International Edition, 36(16), 1725–1727. https://doi.org/10.1002/anie.199717251
  • Kuppler, R.J., Timmons, D.J., Fang, Q.R., Li, J-R., Makal, T.A., Young, M.D., Yuan, D., Zhao, D., Zhuang, W., Zhou, H.C. (2009). Potential applications of metal-organic frameworks. Coordination Chemistry Reviews, 253, 3042–3066. https://doi.org/10.1016/j.ccr.2009.05.019
  • Lammert, M., Wharmby, M.T., Smolders, S., Bueken, B., Lieb, A., Lomachenko, K.A., De Vos, D., Stock, N. (2015). Cerium-based Metal Organic Frameworks with UiO-66 Architecture: Synthesis, Properties and Redox Catalytic Activity. Chemical Communications, 51, 12578–12581. https://doi.org/10.1039/C5CC02606G
  • Lee, Y.R., Kim, J., Ahn, W.S. (2013). Synthesis of metal-organic frameworks: A mini review. Korean Journal of Chemical Engineering, 30, 1667–1680. https://doi.org/10.1007/s11814-013-0140-6
  • Li, H., Eddaoudi, M., Groy, T.L., Yaghi, O.M. (1998). Establishing Microporosity in Open Metal-Organic Frameworks: Gas Sorption Isotherms for Zn(BDC) (BDC ) 1,4-Benzenedicarboxylate). Journal of the American Chemical Society, 120(33), 8571–8572. https://doi.org/10.1021/ja981669x
  • Li, H., Eddaoudi, M., O’Keeffe, M., Yaghi, O.M. (1999). Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature, 402, 276–279. https://doi.org/10.1038/46248
  • Li, Z.Q., Qiu, L.G., Xu, T., Wu, Y., Wang, W., Wu, Z.Y., Jiang, X. (2009). Ultrasonic synthesis of the microporous metal-organic framework Cu3(BTC)2 at ambient temperature and pressure: An efficient and environmentally friendly method. Materials Letters, 63, 78–80. https://doi.org/10.1016/j.matlet.2008.09.010
  • Li, Y., Yang, R.T., (2006). Hydrogen Storage in Metal-Organic Frameworks by Bridged Hydrogen Spillover. Journal of the American Chemical Society, 128(25), 8136–8137. https://doi.org/10.1021/ja061681m
  • Li, Y.W., Yang, R.T. (2006). Significantly Enhanced Hydrogen Storage in Metal-Organic Frameworks via Spillover. Journal of the American Chemical Society, 128(3), 726–727. https://doi.org/10.1021/ja056831s
  • Liang, W., D’Alessandro, D.M. (2013). Microwave-assisted solvothermal synthesis of zirconium oxide based metal-organic frameworks. Chemical Communications, 49, 3706–3708. https://doi.org/10.1039/c3cc40368h
  • Lu, J., Paliwala, T., Lim, S.C., Yu, C., Niu, T., Jacobson, A.J. (1997). Coordination Polymers of Co(NCS)2 with Pyrazine and 4,4′-Bipyridine: Syntheses and Structures. Inorganic Chemistry, 36(5), 923–929. https://doi.org/10.1021/ic961158g
  • Lukose, B., Supronowicz, B., Petkov, P.St., Frenzel, J., Kuc, A.B., Seifert, G., Vayssilov, G.N., Heine, T. (2012). Structural properties of metal-organic frameworks within the density-functional based tight-binding method. Physica status solidi B, 249, 335–342. https://doi.org/10.1002/pssb.201100634
  • Ma, S., Zhou, H.C., (2010). Gas storage in porous metal-organic frameworks for clean energy applications. Chemical Communications, 46, 44–53. https://doi.org/10.1039/B916295J
  • Mahmoodi, N.M., Abdi, J., Oveisi, M., Asli, M.A., Vossoughi, M. (2018). Metal-organic framework (MIL-100 (Fe)): Synthesis, detailed photocatalytic dye degradation ability in colored textile wastewater and recycling. Materials Research Bulletin, 100, 357–366. https://doi.org/10.1016/j.materresbull.2017.12.033
  • Martin, R.L., Lin, L.C., Jariwala, K., Smit, B., Haranczyk, M. (2013). Mail-Order Metal-Organic Frameworks (MOFs): Designing Isoreticular MOF‑5 Analogues Comprising Commercially Available Organic Molecules. The Journal of Physical Chemistry C, 117(23), 12159–12167. https://doi.org/10.1021/jp401920y
  • Mattesini, M., Soler, J.M., Ynduráin, F. (2006). Ab initio study of metal-organic framework-5 Zn4O(1,4-benzenedicarboxylate)3: An assessment of mechanical and spectroscopic properties, Physical Review B, 2006(73), 094111. https://doi.org/10.1103/PhysRevB.73.094111
  • Millward, A.R., Yaghi, O.M. (2005). Metal-Organic Frameworks with Exceptionally High Capacity for Storage of Carbon Dioxide at Room Temperature. Journal of the American Chemical Society, 127(51), 17998–17999. https://doi.org/10.1021/ja0570032
  • Min Choi, K., Hyo Park, J., Ku Kang, J. (2015). Nanocrystalline MOFs embedded in the crystals of other MOFs and their multifunctional performance for molecular encapsulation and energy-carrier storage. Chemistry of Materials, 27, 5088–5093. https://doi.org/10.1021/acs.chemmater.5b01786
  • Miralda, C.M., Macias, E.E., Zhu, M., Ratnasamy, P., Carreon, M.A., (2012). Zeolitic Imidazole Framework-8 Catalysts in the Conversion of CO2 to Chloropropene Carbonate. ACS Catalysis, 2, 180–183. https://doi.org/10.1021/cs200638h
  • Morris, R.E. (2009). Ionothermal synthesis—ionic liquids as functional solvents in the preparation of crystalline materials. Chemical Communications, 21, 2990–2998. https://doi.org/10.1039/B902611H
  • Mulfort, K.L., Hupp, J.T. (2007). Chemical Reduction of Metal-Organic Framework Materials as a Method to Enhance Gas Uptake and Binding. Journal of the American Chemical Society, 129(31), 9604–9605. https://doi.org/10.1021/ja0740364
  • Mulfort, K.L., Hupp, J.T. (2008). Alkali Metal Cation Effects on Hydrogen Uptake and Binding in Metal-Organic Frameworks. Inorganic Chemistry, 47(18), 7936–7938. https://doi.org/10.1021/ic800700h
  • Mueller, T., Ceder, G. (2005). A Density Functional Theory Study of Hydrogen Adsorption in MOF-5. The Journal of Physical Chemistry B, 109(38), 17974–17983. https://doi.org/10.1021/jp051202q
  • Ni, Z., Masel, R.I. (2006). Rapid Production of Metal-Organic Frameworks via Microwave-Assisted Solvothermal Synthesis. Journal of the American Chemical Society, 128(38), 12394–12395. https://doi.org/10.1021/ja0635231
  • Ni, Z., Masel, R.I. (2006). Rapid Production of Metal-Organic Frameworks via Microwave-Assisted Solvothermal Synthesis. Journal of the American Chemical Society, 128(38), 12394–12395. https://doi.org/10.1021/ja0635231
  • Nørskov, J.K., Abild-Pedersen, F., Studt, F. (2011). Density functional theory in surface chemistry and catalysis. Proceedings of the National Academy of Sciences, 108(3), 937–943. https://doi.org/10.1073/pnas.1006652108
  • Odoh, S.O., Cramer, C.J., Truhlar, D.G., Gagliardi, L. (2015). Quantum-Chemical Characterization of the Properties and Reactivities of Metal-Organic Frameworks. Chemical Reviews, 115(12), 6051–6111. https://doi.org/10.1021/cr500551h
  • Ohmori, O., Fujita, M. (2004). Heterogeneous catalysis of a coordination network: cyanosilylation of imines catalyzed by a Cd(II)-(4,4‘-bipyridine) square grid complex. Chemical Communications, (14), 1586–1587. https://doi.org/10.1039/B406114B
  • Oliveira, A., Mavrandonakis, A., de Lima, G.F., De Abreu, H.A. (2017). Cyanosilylation of Aldehydes Catalyzed by MIL-101(Cr): A Theoretical Investigation. Chemistry Select, 2, 7813–7820. https://doi.org/10.1002/slct.201700946
  • Pachfule, P., Das, R., Poddar, P., Banerjee, R. (2011). Solvothermal Synthesis, Structure, and Properties of Metal Organic Framework Isomers Derived from a Partially Fluorinated Link. Crystal Growth & Design, 11(4), 1215–1222. https://doi.org/10.1021/cg101414x
  • Park, K.S., Ni, Z., Cote, A.P., Choi, J. Y., Huang, R., Uribe-Romo, F.J., Chae, H.K., O’Keeffe, M., Yaghi, O.M. (2006). Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences, 103, 10186–10191. https://doi.org/10.1073/pnas.0602439103
  • Parnham, E.R., Morris, R.E. (2007). Ionothermal Synthesis of Zeolites, Metal-Organic Frameworks, and Inorganic–Organic Hybrids. Accounts of Chemical Research, 40(10), 1005–1013. https://doi.org/10.1021/ar700025k
  • Pettinari, C., Marchetti, F., Mosca, N., Tosia, G., Drozdov, A. (2017). Application of Metal-organic Frameworks. Polymer International, 66, 731–744. https://doi.org/10.1002/pi.5315
  • Phikulthai, S., Injongkol, Y., Maihom, T., Treesukol, P., Maitarad, P., Tangsermvit, V., Kongpatpanich, K., Boekfa, B. (2017). Adsorption of Ammonia on Zirconium-Based Metal-Organic Framework: A Combined Experimental and Theoretical Study. Key Engineering Materials, 757, 93–97. https://doi.org/10.4028/www.scientific.net/KEM.757.93
  • Piszczek, P., Radtke, A., Grodzicki, A., Wojtczak, A., Chojnacki, J. (2007). The new type of [Zr6(μ3-O)4(μ3-OH)4] cluster core: Crystal structure and spectral characterization of [Zr6O4(OH)4(OOCR)12] (R = But, C(CH3)2Et). Polyhedron, 26, 679–685. https://doi.org/10.1016/j.poly.2006.08.025
  • Proch, S., Herrmannsdorfer, J., Kempe, R., Kern, C., Jess, A., Seyfarth, L., Senker, J. (2008). Pt@MOF-177: Synthesis, Room-Temperature Hydrogen Storage and Oxidation Catalysis. Chemistry A European Journal, 14, 8204–8212. https://doi.org/10.1002/chem.200801043
  • Rosi, N.L., Eckert, J., Eddaoudi, M., Vodak, D.T., Kim, J., O’Keeffe, M., Yaghi, O.M. (2003). Hydrogen Storage in Microporous Metal-Organic Frameworks. Science, 300(5622), 1127–1129. https://doi.org/10.1126/science.1083440
  • Rowsell, J.L.C., Yaghi, O.M. (2004). Metal-organic frameworks: a new class of porous materials. Microporous and Mesoporous Materials, 73, 3–14. https://doi.org/10.1016/j.micromeso.2004.03.034
  • Sabo, M., Henschel, A., Frode, H., Klemm, E., Kaskel, S. (2007). Solution infiltration of palladium into MOF-5: synthesis, physisorption and catalytic properties. Journal of Materials Chemistry, 17, 3827–3832. https://doi.org/10.1039/B706432B
  • Sagara, T., Klassen, J., Ganz, E. (2005). Computational study of hydrogen binding by metal-organic framework-5. The Journal of Chemical Physics, 121, 12543–12547. https://doi.org/10.1063/1.1809608
  • Samanta, A., Furuta, T., Li, J. (2006). Theoretical assessment of the elastic constants and hydrogen storage capacity of some metal-organic framework materials. The Journal Of Chemical Physics, 125, 084714. https://doi.org/10.1063/1.2337287
  • Schaate, A., Roy, P., Godt, A., Lippke, J., Waltz, F., Wiebcke, M., Behrens, P. (2011). Modulated Synthesis of Zr-Based Metal-Organic Frameworks: From Nano to Single Crystals. Chemistry A European Journal, 17, 6643–6651. https://doi.org/10.1002/chem.201003211
  • Schlichte, K., Kratzke, T., Kaskel, S. (2004). Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2. Microporous and Mesoporous Materials, 73, 81–88. https://doi.org/10.1016/j.micromeso.2003.12.027
  • Schroder, F., Esken, D., Cokoja, M., van den Berg, M.W.E., Lebedev, O.I., van Tendeloo, G., Walaszek, B., Buntkowsky, G., Limbach, H.H., Chaudret, B., Fischer, R.A. (2008). Ruthenium Nanoparticles inside Porous [Zn4O(bdc)3] by Hydrogenolysis of Adsorbed [Ru(cod)(cot)]: A Solid-State Reference System for Surfactant-Stabilized Ruthenium Colloids. Journal of the American Chemical Society, 130(19), 6119–6130. https://doi.org/10.1021/ja078231u
  • Seminario, J.M. (1995). An Introduction to Density Functional Theory in Chemistry. Theoretical and Computational Chemistry, 2, 1–27. https://doi.org/10.1016/S1380-7323(05)80031-7
  • Serre, C., Millange, F., Thouvenot, C., Nogues, M., Marsolier, G., Louer, D., Ferey, G. (2002). Very Large Breathing Effect in the First Nanoporous Chromium(III)-Based Solids: MIL-53 or CrIII(OH)•{O2C-C6H4-CO2}•{HO2C-C6H4-CO2H}x•H2Oy. Journal of the American Chemical Society, 124, 13519–13526. https://doi.org/10.1021/ja0276974
  • Son, W.J., Kim, J., Kim, J., Ahn, W.S. (2008). Sonochemical synthesis of MOF-5. Chemical Communications, (48), 6336–6338. https://doi.org/10.1039/B814740J
  • Stock, N., Biswas, S. (2012). Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chemical Reviews, 112(2), 933–969. https://doi.org/10.1021/cr200304e
  • Sugimoto, T., Mizushima, T., Okamoto, A., Kurita, N. (2014). Structures and electronic properties of metal organic frameworks: DFT and ab initio FMO calculations for model systems. Chemical Physics Letters, 612, 295–301. https://doi.org/10.1016/j.cplett.2014.08.012
  • Suh, M.P., Park, H.J., Prasad, T.K., Lim, D.W. (2012). Hydrogen Storage in Metal-Organic Frameworks. Chemical Reviews, 112(2), 782–835. https://doi.org/10.1021/cr200274s
  • Supronowicz, B., Mavrandonakis, A., Heine, T. (2013). Interaction of Small Gases with the Unsaturated Metal Centers of the HKUST-1 Metal Organic Framework. The Journal of Physical Chemistry, 117(28), 14570–14578. https://doi.org/10.1021/jp4018037
  • Tröbs, L., Wilke, M., Szczerba, W., Reinholz, U., Emmerling, F. (2014). Mechanochemical synthesis and characterization of two new bismuth metal organic frameworks. CrystEngComm, 16, 5560–5565. https://doi.org/10.1039/C3CE42633E
  • Vandichel, M., Hajek, J., Vermoortele, F., Waroquier, M., De Vosb, D.E., Van Speybroeck, V. (2015). Active site engineering in UiO-66 type metal–organic frameworks by intentional creation of defects: a theoretical rationalization. CrystEngComm, 17, 395–406. https://doi.org/10.1039/C4CE01672F
  • Venkataramanan, N.S., Sahara, R., Mizuseki, H., Kawazoe, Y. (2009). Probing the Structure, Stability and Hydrogen Adsorption of Lithium Functionalized Isoreticular MOF-5 (Fe, Cu, Co, Ni and Zn) by Density Functional Theory. International Journal of Molecular Sciences, 10, 1601–1608. https://doi.org/10.3390/ijms10041601
  • Vermoortele, F., Ameloot, R., Vimont, A., Serrec, C., De Vos, D. (2011). An amino-modified Zr-terephthalate metal-organic framework as an acid-base catalyst for cross-aldol condensation. Chemical Communications, 47, 1521–1523. https://doi.org/10.1039/c0cc03038d
  • Vermoortele, F., Bueken, B., Bars, G.L., Voorde, B.V., Vandichel, M., Houthoofd, K., Vimont, A., Daturi, M., Waroquier, M., Speybroeck, V.V., Kirschhock, C., De Vos, D.E. (2013). Synthesis Modulation as a Tool To Increase the Catalytic Activity of Metal-Organic Frameworks: The Unique Case of UiO-66(Zr). Journal of the American Chemical Society, 135(31), 11465–11468. https://doi.org/10.1021/ja405078u
  • Vermoortele, F., Vandichel, M., de Voorde, B.V., Ameloot, R., Waroquier, M., Van Speybroeck, V., De Vos, D.E. (2012). Electronic Effects of Linker Substitution on Lewis Acid Catalysis with Metal-Organic Frameworks. Angewandte Chemie International Edition, 51, 1–5. https://doi.org/10.1002/anie.201108565
  • Vimont, A., Goupil, J.M., Lavalley, J.C., Daturi, M., Surble, S., Serre, C., Millange, F., Ferey, G., Audebrand, N. (2006). Investigation of Acid Sites in a Zeotypic Giant Pores Chromium(III) Carboxylate. Journal of the American Chemical Society, 128(10), 3218–3227. https://doi.org/10.1021/ja056906s
  • Vimont, A., Leclerc, H., Mauge, F., Daturi, M., Lavalley, J.C., Surble, S., Serre, C., Ferey, G. (2007). Creation of Controlled Brønsted Acidity on a Zeotypic Mesoporous Chromium(III) Carboxylate by Grafting Water and Alcohol Molecules. The Journal of Physical Chemistry C, 111(1), 383–388. https://doi.org/10.1021/jp064686e
  • Vogiatzis, K.D., Polynski, M.V., Kirkland, J.K., Townsend, J., Hashemi, A., Liu, C., Pidko, E.A. (2019). Computational Approach to Molecular Catalysis by 3d Transition Metals: Challenges and Opportunities. Chemical Reviews, 119(4), 2453–2523. https://doi.org/10.1021/acs.chemrev.8b00361
  • Wang, Z., Cohen, S.M. (2007). Postsynthetic Covalent Modification of a Neutral Metal-Organic Framework. Journal of the American Chemical Society, 129, 12368–12369. https://doi.org/10.1021/ja074366o
  • Wang, Z., Cohen, S.M. (2009). Postsynthetic modification of metal–organic frameworks. Chemical Society Reviews, 38, 1315–1329. https://doi.org/10.1039/B802258P
  • Wanga, Y., Zenga, Y., Wua, X., Mu, M., Chen, L. (2018). A novel Pd-Ni bimetallic synergistic catalyst on ZIF-8 for Sonogashira coupling reaction. Materials Letters, 220, 321–324. https://doi.org/10.1016/j.matlet.2018.03.006
  • Wells, A.F., (1954). The Geometrical Basis of Crystal Chemistry. Part 1. Acta Crystallographica, 7, 535–544. https://doi.org/10.1107/S0365110X5400182X
  • Wells, A.F., (1954). The Geometrical Basis of Crystal Chemistry. Part 2. Acta Crystallographica, 7, 545–554. https://doi.org/10.1107/S0365110X54001831
  • Wilmer, C.E., Leaf, M., Lee, C.Y., Farha, O.K., Hauser, B.G., Hupp, J.T., Snurr, R.Q. (2012). Large-scale screening of hypothetical metal–organic frameworks. Nature Chemistry, 4, 83–89. https://doi.org/10.1038/nchem.1192
  • Wong-Foy, A.G., Matzger, A.J., Yaghi, O.M. (2006). Exceptional H2 Saturation Uptake in Microporous Metal-Organic Frameworks. Journal of the American Chemical Society, 128(11), 3494–3495. https://doi.org/10.1021/ja058213h
  • Wu, C.D., Hu, A., Zhang, L., Lin, W. (2005). A Homochiral Porous Metal-Organic Framework for Highly Enantioselective Heterogeneous Asymmetric Catalysis. Journal of the American Chemical Society, 127(25), 8940–8941. https://doi.org/10.1021/ja052431t
  • Yaghi, O.M., Li, H. (1995). Hydrothermal Synthesis of a Metal-Organic Framework Containing Large Rectangular Channels. Journal of the American Chemical Society, 117(41), 10401–10402. https://doi.org/10.1021/ja00146a033
  • Yaghi, O.M., O’Keeffe, M., Ockwig, N.W., Chae, H.K., Eddaoudi, M., Kim, J. (2003). Reticular synthesis and the design of new materials. Nature, 423, 705–714. https://doi.org/10.1038/nature01650
  • Yoo, Y., Varela-Guerrero, V., Jeong, H.K. (2011). Isoreticular Metal-Organic Frameworks and Their Membranes with Enhanced Crack Resistance and Moisture Stability by Surfactant-Assisted Drying. Langmuir, 27(6), 2652–2657. https://doi.org/10.1021/la104775d
  • Yuan, S., Feng, L., Wang, K., Pang, J., Bosch, M., Lollar, C., Sun, Y., Qin, J., Yang, X., Zhang, P., Wang, Q., Zou, L., Zhang, Y., Zhang, L., Fang, Y., Li, J., Zhou, H.C. (2018). Stable Metal-Organic Frameworks: Design, Synthesis, and Applications. Advanced Materials, 30(37), 1704303. https://doi.org/10.1002/adma.201704303
  • Zalomaeva, O.V., Chibiryaev, A.M., Kovalenko, K.A., Kholdeeva, O.A., Balzhinimaev, B.S., Fedin, V.P., (2013). Cyclic carbonates synthesis from epoxides and CO2 over metal–organic framework Cr-MIL-101. Journal of Catalysis, 298, 179–185. https://doi.org/10.1016/j.jcat.2012.11.029
  • Zhao, S., Chen, J. (2008). Metal organic framework-derived Ni/Zn/Co/NC composites as efficient catalyst for oxygen evolution reaction. Journal of Porous Materials, 26, 381–387. https://doi.org/10.1007/s10934-018-0612-5
  • Zhao, L., Yang, Q., Ma, Q., Zhong, C., Mi, J., Liu, D. (2011). A force field for dynamic Cu-BTC metal-organic framework. Journal of Molecular Modeling, 17, 227–234. https://doi.org/10.1007/s00894-010-0720-x
  • Zheng, B., Liang, Z., Li, G., Huo, Q., Liu, Y. (2010). Synthesis, Structure, and Gas Sorption Studies of a Three-Dimensional Metal-Organic Framework with NbO Topology. Crystal Growth & Design, 10(8), 3405–3409. https://doi.org/10.1021/cg100046j
  • Zhou, H-C., Long, J.R., Yaghi, O.M. (2012). Introduction to Metal-Organic Frameworks. Chemical Reviews, 112(2), 673–674. https://doi.org/10.1021/cr300014x
  • Zong, S., Zhang, Y., Lu, N., Ma, P., Wang, J., Shi, X-R. (2018). A DFT Screening of M-HKUST-1 MOFs for Nitrogen-Containing Compounds Adsorption. Nanomaterials, 8, 958–973. https://doi.org/10.3390/nano8110958
Uwagi
Section "Chemistry"
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ef9e0e81-583a-4432-be0b-1abd9e995623
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.