Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This article accounts for the development of a powerful artificial neural network (ANN) model, designed for the prediction of relative humidity levels, using other meteorological parameters such as the maximum temperature, minimum temperature, precipitation, wind speed, and intensity of solar radiation in the Rabat-Kenitra region (a coastal area where relative humidity is a real concern). The model was applied to a database containing a daily history of five meteorological parameters collected by nine stations covering this region from 1979 to mid-2014. It has been demonstrated that the best performing three-layer (input, hidden, and output) ANN mathematical model for the prediction of relative humidity in this region is the multi-layer perceptron (MLP) model. This neural model using the Levenberg-Marquard algorithm, with an architecture of [5-11-1] and the transfer functions Tansig in the hidden layer and Purelin in the output layer, was able to estimate relative humidity values that were very close to those observed. This was affirmed by a low mean squared error (MSE) and a high correlation coefficient (R), compared to the statistical indicators relating to the other models developed as part of this study.
Wydawca
Czasopismo
Rocznik
Tom
Strony
13--20
Opis fizyczny
Bibliogr. 30 poz., mapa, tab., wykr.
Twórcy
autor
- Moulay Ismail University, Faculty of Sciences, Zitoune, 50000, Meknes, Morocco
autor
- University of Oxford, Mathematical Institute, Oxford, United Kingdom
autor
- Moulay Ismail University, Faculty of Sciences, Zitoune, 50000, Meknes, Morocco
autor
- Moulay Ismail University, Faculty of Sciences, Zitoune, 50000, Meknes, Morocco
autor
- Moulay Ismail University, Faculty of Sciences, Zitoune, 50000, Meknes, Morocco
Bibliografia
- ABDALLAOUI A., EL BADAOUI H. 2011. Prédiction des teneurs en métaux lourds des sédiments à partir de leurs caractéristiques physico-chimiques [Prediction of heavy metal contents in sediments from their physico-chemical characteristics]. Journal Physical and Chemical News. Vol. 58 p. 90–97.
- ABDALLAOUI A., EL BADAOUI H. 2016. Intelligences artificielles pour modéliser les données météorologiques [Artificial intelligences to model meteorological data]. Éditions Universitaires Européennes. ISBN 978-3639503722 pp. 224.
- BEN EL HOUARI M., ABDALLAOUI A., Z EGAOUI O. 2016a. Forecasting of the ambient air temperature using the artificial neural networks. International Journal of Multi-disciplinary Sciences (IJMS). Vol. 3(2) p. 14–19.
- BEN EL HOUARI M., ZEGAOUI O., ABDALLAOUI A. 2014. Development of mathematical models to forecasting the monthly precipitation. American Journal of Engineering Research (AJER). Vol. 3(11) p. 38–45.
- BEN EL HOUARI M., ZEGAOUI O., ABDALLAOUI A. 2015. Prediction of air temperature using multilayer perceptrons with Levenberg–Marquardt training algorithm. International Research Journal of Engineering and Technology (IRJET). Vol. 2(8) p. 26–32.
- BEN EL HOUARI M., ZEGAOUI O., ABDALLAOUI A. 2016b. The use of Kohonen self-organizing maps to study meteorological parameters in Meknes city (Morocco). International Journal of Scientific & Engineering Research (IJSER). Vol. 7(7) p. 608–612.
- BEN EL HOUARI M., ZEGAOUI O., ABDALLAOUI A. 2016c. Development of multilayer perceptron and radial basis function artificial neural network models for forecasting the monthly air temperature. Advances in Information Technology: Theory and Application. Vol. 1(1) p. 147–152.
- BIMAL D., SUSANTA M. 2011. Better prediction of humidity using artificial neural network. Fourth International Conference on the Applications of Digital Information and Web Technologies. IEEE. Stevens Point, WI, USA 4–6.08.2011 p. 59–64. DOI 10.1109/ICADIWT.2011.6041395.
- BISHOP C.M. 1995. Neural networks for pattern recognition. Oxford. Oxford University Press. ISBN 978-0-19-853864-6 pp. 498.
- DEDECKER A., PETER L., GOETHALS M., GABRIELS W., DE PAUW N. 2002. Optimisation of artificial neural network (ANN) model design for prediction of macroinvertebrate communities in the Zwalm River basin (Flanders, Belgium). The Scientific World Journal. Vol. 2 p. 96–104. DOI 10.1016/j.ecolmodel.2004.01.003.
- DOMBAYCI Ö.A., GOLCU M. 2009. Daily means ambient temperature prediction using artificial: A case study of Turkey. Renewable Energy. Vol. 34 p. 1158–1161. DOI 10.1016/j.renene. 2008.07.007.
- EL AZHARI K., EL BADAOUI H., ABDALLAOUI A., ZINEDDINE H. 2017. Optimization of neural architectures for prediction of heavy metal concentrations in Red Sea sediments. International Journal of Scientific & Engineering Research. Vol. 8(7) p. 906–912.
- EL BADAOUI H., ABDALLAOUI A., CHABAA S. 2014a. Multilayer perceptron and radial basis function grating for moisture prediction. International Journal of Innovation and Scientific Research. Vol. 5(1) p. 55–67.
- EL BADAOUI H., ABDALLAOUI A., CHABAA S. 2014b. Using MLP neural networks for predicting global solar radiation. The International Journal of Engineering and Science (IJES). Vol. 2 (12) p. 15–26.
- FRENCH M.N., KRAJEWSKI W.F., CUYKENDAL R.R. 1992. Rainfall forecasting in space and time using a neural network. Journal of Hydrology. Vol. 137 p. 1–37. DOI 10.1016/0022-1694(92)90046-X.
- GARDNER M.W., DORLING S.R. 1998. Artificial neural networks (the multilayer perceptron) – A review of applications in the atmospheric sciences. Atmospheric Environment. Vol. 32(14–15) p. 2627–2636. DOI 10.1016/S1352-2310(97)00447-0.
- HSU K., GAO X., SOROOSHAIN S., GUPTA H.V. 1997. Precipitation estimation from remotely sensed information using artificial neural networks. Journal of Applied Meteorology and Climatology. Vol. 36(9) p. 1176–1190. DOI 10.1175/1520-0450(1997)036<1176:PEFRSI>2.0.CO;2.
- HUBBARD K.G., MAHMOOD R., CARLSON C. 2003. Estimation of daily dew point temperature in the northern Great Plains using maximum and minimum temperatures. Agronomy Journal. Vol. 95(2) p. 323–328. DOI 10.2134/agronj2003.3230.
- IMRAN T., SHAFIQUR R., KHALED B. 2002. Application of neural networks for the prediction of hourly mean surface temperatures in Saudi Arabia. Renewable Energy. Vol 25 p. 545–554. DOI 10.1016/S0960-1481(01)00082-9.
- KEMAJOU A., MBA L., MEUKAM P. 2012. Application of artificial neural network for predicting the indoor air temperature in modern building in humid region. British Journal of Applied Science & Technology. Vol. 2(1) p. 23–34. DOI 10.1016/j.enbuild.2016.03.046.
- LAAFOU S., OMARI H., ABDALLAOUI A. 2016. Application of artificial neural networks with error back-propagation algorithm to predict nitrate levels in water. Advances in Information Technology: Theory and Application. Vol. 1(1) p. 135–140.
- LUK K.C., BALL J., SHARMA A. 2000. A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting. Journal of Hydrology. Vol. 227 p. 56–65. DOI 10.1016/S0022-1694(99)00165-1.
- MAHMOOD R., HUBBARD K.G. 2005. Assessment of bias in estimates of evapotranspiration and soil moisture through the use of modelled solar radiation and dew point temperature data. Agriculture and Forest Meteorology. Vol. 130 p. 71–84. DOI 10.1016/j.agrfor-met.2005.02.004.
- OMARI H., ABDALLAOUI A., LAAFOU S. 2016. Multilayer perceptron neural networks with error back-propagation algorithm for the prediction of nitrate concentrations in groundwater. The International Journal of Multi-disciplinary Sciences. Vol. 3(2) p. 1–7.
- ÖZBALTA T.G., SEZER A., YILDIZ Y. 2012. Models for prediction of daily mean indoor temperature and relative humidity: Education building in Izmir, Turkey. Indoor Built Environment. Vol. 21(6) p. 772–781. DOI 10.1177/1420326X11422163.
- PARISHWAD G.V., BHARDWAJ R.K., NEMA V.K. 1998. Prediction of monthly-mean hourly relative humidity, ambient temperature, and wind velocity for India. Renewable Energy. Vol. 13(3) p. 363–380. DOI 10.1016/S0960-1481(98)00010-X.
- RADHIKA Y., SHASHI M. 2009. Atmospheric temperature prediction using support vector machines. International Journal of Computer Theory and Engineering. Vol. 1. No. 1 p. 55–58. DOI 10.7763/IJCTE.2009.V1.9.
- ROJAS R. 1996. Neural networks. A systematic introduction. Berlin. Springer-Verlag. ISBN 978-3540605058 pp. 509.
- SANTHOSH BABOO S., SHEREEF I.K. 2010. An efficient weather forecasting system using Artificial Neural Network. International Journal of Environmental Science and Development. Vol. 1. No. 4, p. 321–325. DOI 10.7763/IJESD.2010.V1.63.
- SMITH B.A., MCCLENDON R.W., HOOGENBOOM G. 2006. Improving air temperature prediction with artificial neural networks. International Journal of Computational Intelligence. Vol. 3(3) p. 179–186.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ef9c709c-734b-444e-ab82-5d56b59a5aab