PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prądy łożyskowe i napięcia wałowe w maszynach elektrycznych – przyczyny i sposoby przeciwdziałania

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Shaft currents in electric machines – causes and countermeasures
Języki publikacji
PL
Abstrakty
PL
Artykuł dotyczy występowania napięć i prądów wałowych w maszynach elektrycznych wirujących. Przedstawiono w nim zestawienie potencjalnych przyczyn tych pasożytniczych zjawisk zarówno pod kątem konstrukcji maszyny, jak i charakteru zasilania. W artykule przedstawiono również przegląd znanych i wykorzystywanych metod eliminacji prądów wałowych oraz eliminacji skutków ich przepływu.
EN
This article deals with the occurrence of shaft voltages and currents in rotating electrical machines. It presents a list of potential causes of these parasitic phenomena, both in terms of machine design and nature of power supply. The article also presents an overview of known and used methods of eliminating shaft currents and reducing their effects.
Rocznik
Strony
97--102
Opis fizyczny
Bibliogr. 35 poz., rys.
Twórcy
  • Politechnika Śląska, Katedra Elektrotechniki i Informatyki, ul. Akademicka 10, 44-100 Gliwice
  • Politechnika Śląska, Katedra Elektrotechniki i Informatyki, ul. Akademicka 10, 44-100 Gliwice
autor
  • Sieć Badawcza Łukasiewicz – Instytut Napędów i Maszyn Elektrycznych KOMEL, al. Rozdzieńskiego 188, 40-203 Katowice
Bibliografia
  • [1] Glinka T., Szymaniec S., Eksploatacja i diagnostyka maszyn elektrycznych i transformatorów, Wydawnictwo Naukowe PWN SA, Warszawa 2019, ISBN 978-83-01-20735-9.
  • [2] Mustafa M.O., Nikolakopoulos G., Gustafsson T., Faults Classification Scheme for Three Phase Induction Motor, International Journal of System Dynamics Applications 3(1):1- 20, Jan. 2014, DOI: 10.4018/ijsda.2014010101.
  • [3] Drak B., Zientek P., Analiza uszkodzeń silników wysokonapięciowych prądu przemiennego w elektrowniach zawodowych, Napędy i Sterowanie, nr 2/2014, s. 74-78.
  • [4] Alger P.L., Samson H.W., Shaft currents in electric machines, in J. Am. Inst. Electr. Eng., Vol. 42, No. 12, pp. 1325–1334, Dec. 1923, doi: 10.1109/JoAIEE.1923.6593419.
  • [5] Glinka T., Historia rozwoju maszyn elektrycznych, Maszyny Elektryczne: Zeszyty Problemowe, Nr 4/2016 (112), s. 109– 120.
  • [6] Upadhyay R.K., Kumaraswamidhas L. A., Azam Md. S., Rolling element bearing failure analysis: A case study, Case Studies in Engineering Failure Analysis, Vol. 1, No.1, pp. 15–17, Jan. 2013, doi: 10.1016/j.csefa.2012.11.003.
  • [7] Bonnett A.H., Cause and analysis of bearing failures in electrical motors, Record of Conference Papers Industry Applications Society 39th Annual Petroleum and Chemical Industry Conference, San Antonio, TX, USA, 1992, pp. 87–95, doi: 10.1109/PCICON.1992.229322.
  • [8] Stone G., Lloyd B., Sasic M., Monitoring of shaft voltages and grounding currents in rotating machines, Conf. Proc. from 17th International Conference on Electrical Machines and Systems (ICEMS), Hangzhou, China, Oct. 2014, pp. 3361–3364, doi: 10.1109/ICEMS.2014.7014072.
  • [9] Muetze A., Binder A., Vogel H., Hering J., What can bearings bear?, IEEE Ind. Appl. Mag., Vol. 12, No. 6, pp. 57–64, Nov. 2006, doi: 10.1109/IA-M.2006.248014.
  • [10] Costello M. J., Shaft voltages and rotating machinery, IEEE Trans. on Ind. Applicat., Vol. 29, No. 2, pp. 419–426, Apr. 1993, doi: 10.1109/28.216553.
  • [11] Zientek P., Prądy łożyskowe w silnikach indukcyjnych dużej mocy, Przegląd Elektrotechniczny, 9 (2013), 62-65.
  • [12] Plazenet T., Boileau T., Caironi C., Nahid-Mobarakeh B., An overview of shaft voltages and bearing currents in rotating machines, 2016 IEEE Industry Applications Society Annual Meeting, Portland, OR, USA, Oct.. 2016, pp. 1–8, doi: 10.1109/IAS.2016.7731884.
  • [13] Gołębiowski L., Gołębiowski M., Mazur D., Voltages in the Shaft of the Induction Motor in 3D FEM Formulation, IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives, Cracow, Poland, Sept. 2007, pp. 142–145, doi: 10.1109/DEMPED.2007.4393085.
  • [14] Hadden A. et al., A Review of Shaft Voltages and Bearing Currents in EV and HEV Motors, IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, Italy, Oct. 2016, pp. 1578–1583, doi: 10.1109/IECON.2016.7793357.
  • [15] Prashad H.
  • [ed], Shaft voltages and their origin in rotating machines and flow of electric current through bearings, Chapter 2 of Tribology in Electrical Environments, Tribology and Interface Engineering Series, Vol. 49, Elsevier, 2006, pp. 15–23.
  • [16] Motor Shaft Voltages and Bearing Currents under PWM Inverter Operation, Gambica/Beama Technical Guide, 2016.
  • [17] Kim K.-T., Hur J., Reduction of shaft voltage by the flux-path design in IPM-type BLDC motor, 2013 International Conference on Electrical Machines and Systems (ICEMS), Busan, Oct. 2013, pp. 803–806, doi: 10.1109/ICEMS.2013.6713158.
  • [18] Schuster M., Springer J. , Binder A., Comparison of a 1.1 kWinduction machine and a 1.5 kW-PMSM regarding commonmode bearing currents, International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Amalfi, June 2018, pp. 1–6, doi: 10.1109/SPEEDAM.2018.8445298.
  • [19] Bubert A., Zhang J., De Doncker R. W., Modeling and measurement of capacitive and inductive bearing current in electrical machines, Brazilian Power Electronics Conference (COBEP), Juiz de Fora, Nov. 2017, pp. 1–6, doi: 10.1109/COBEP.2017.8257251.
  • [20] Magdun O., Gemeinder Y., Binder A., Prevention of harmful EDM currents in inverter-fed AC machines by use of electrostatic shields in the stator winding overhang, IECON 2010 - 36th Annual Conference on IEEE Industrial Electronics Society, Glendale, AZ, USA, Nov. 2010, pp. 962–967, doi: 10.1109/IECON.2010.5675498.
  • [21] Miloudi H., Bendaoud A., Miloudi M., Gourbi A., Slimani H., Common mode conducted electromagnetic interference in inverter fed-AC Motor, Przeglad Elektrotechniczny, 86 (2010), pp. 272-275.
  • [22] Peng B., Zhao W., Wang X., The Method for Reducing Intrinsic Shaft Voltage by Suitable Selection of Pole-Arc Coefficient in Fractional-Slot Permanent-Magnet Synchronous Machines, IEEE Trans. Magn., Vol. 54, Iss. 11, pp. 1–5, Nov. 2018, doi: 10.1109/TMAG.2018.2834536.
  • [23] Kalaiselvi J., Srinivas S., Design and development of a single CM filter for bearing current and ground current reduction in a dual two level inverter fed open end winding induction motor drive, 2016 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Trivandrum, India, Dec.. 2016, pp. 1–6, doi: 10.1109/PEDES.2016.7914389.
  • [24] Sunitha P. M, Banakara B., Reddy S., Modeling, simulation and analysis of common mode voltage, bearing voltage and bearing current in PWM multilevel inverter fed induction motor with long cable, 2017 2nd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), Bangalore, May 2017, pp. 1161–1167, doi: 10.1109/RTEICT.2017.8256781.
  • [25] Kellan G. Euerle, A Compact Active Filter to Eliminate Common-Mode Voltage in SVPWM Electric Motor Drives. Thesis, 2016, Retrieved from the University of Minnesota Digital Conservancy,http://hdl.handle.net/11299/190604.
  • [26] Luszcz J., Motor Cable Effect on the Converter-Fed AC Motor Common Mode Current, Przeglad Elektrotechniczny, 88 (2012), pp. 177–181.
  • [27] Zare F., Adabi J., Ghosh A., Different Approaches to Reduce Shaft Voltages in AC Generators, 13th European Conference on Power Electronics and Applications, Barcelona, Spain, Sept. 2010.
  • [28] Gonda A., Capan R., Bechev D., Sauer B., The Influence of Lubricant Conductivity on Bearing Currents in the Case of Rolling Bearing Greases, Lubricants 2019, No. 12: 108, :10.3390/lubricants7120108.
  • [29] Muetze A, Binder A., Practical Rules for Assessment of Inverter-Induced Bearing Currents in Inverter-Fed AC pp. 1614–1622, June 2007, doi: 10.1109/TIE.2007.894698.
  • [30] Ferreira F. J. T. E., Cistelecan M. V., de Almeida A. T., Slotembedded partial electrostatic shield for high-frequency bearing current mitigation in inverter-fed induction motors, The XIX International Conference on Electrical Machines - ICEM 2010, Rome, Italy, Sept. 2010, pp. 1–6, doi: 10.1109/ICELMACH.2010.5607985.
  • [31] Gerber S., Wangi R.-J., Reduction of Inverter-Induced Shaft Voltages Using Electrostatic Shielding, Southern African Universities Power Engineering Conference/Robotics and Mechatronics/Pattern Recognition Association of South Africa (SAUPEC/RobMech/PRASA), Bloemfontein, South Africa, sty. 2019, pp. 310–315, doi: 10.1109/RoboMech.2019.8704702.
  • [32] Garcia A., Holmes D. G., Lipo T. A., Reduction of Bearing Currents in Doubly Fed Induction Generators, Conference Record of the 2006 IEEE Industry Applications Conference Forty-First IAS Annual Meeting, Tampa, FL, Oct. 2006, Vol. 1, pp. 84–89, doi: 10.1109/IAS.2006.256488.
  • [33] Boboń A., Drak B., Niestrój R., Zientek P., Napięcia wałowe i prądy łożyskowe w silnikach indukcyjnych dużej mocy. Monografia. BOBRME Komel, Katowice 2011.
  • [34] Rogozin G.G., Osipov D. Y., Induction motor eccentricity diagnosis using impedance spectrum and shaft voltage, The XIX International Conference on Electrical Machines - ICEM 2010, Rome, Italy, Sept. 2010, pp. 1–3, doi: 10.1109/ICELMACH.2010.5608239.
  • [35] Miletic A., Cettolo M., Experimental research on rotor fault diagnosis using external coil voltage analysis and shaft voltage signal analysis, 5th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives, Vienna, Austria, wrz. 2005, pp. 1–4, doi: 10.1109/DEMPED.2005.4662497
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ef96309b-13f6-439d-a501-414b2cae1b4a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.