PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Integration of stream sediment geochemical and ASTER data for porphyry copper deposit exploration in Khatun Abad, North West of Iran

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Integracja geochemicznych danych o osadach dennych oraz danych pozyskanych z systemu ASTER do poszukiwań geologicznych w rejonie złóż miedzi porfirytowej w Khatun Abad, w północno-zachodniej części Iranu
Języki publikacji
EN
Abstrakty
EN
Urumieh-Dokhtar magmatic belt is the host of large porphyry copper deposits in Iran. Khatun Abad area is located in north west part of this belt, so in this study, the stream sediment geochemical survey and hydrothermal alteration zones extracted from ASTER data were used to generation new target for future lithogeochemical survey. In this study after a brief discussion on descriptive statistics, principal component analysis (PCA) and hierarchical cluster analysis were used to compress the information to a few maps and to assist in determining multi-element associations. Then C-A fractal method was used for map classification. In order to extraction hydrothermal zones ASTER data were used. ASTER SWIR bands are most useful for the identification of alteration minerals such as Alunite, Pyrophylite, Kaolinite, Sericute and Carbonates. In this paper based on spectral analysis of ASTER SWIR data six maps of alteration zones were prepared. Geochemical study and spectral analysis of ASTER data showed that mineralization and alteration are limited to E1lb and gr lithological units and have NW-SE trends from east of Khatun Abad to Ghezeljeh-Gheshlaghi.
PL
Pas magmowy Urumieh-Dokhtar zawiera w sobie liczne i zasobne złoża miedzi porfirytowej zalegające na terenie Iranu. Region Khatum Abad leży w północno-zachodniej części tego pasa. W pracy zebrano dane z badań geodezyjnych osadów dennych oraz dane o zmianach hydrotermalnych pobrane z systemu ASTER, dane te wykorzystano następnie do opracowania nowych celów dla badań geochemicznych skał. Praca zawiera krótki wstęp dotyczący metod statystyki opisowej, następnie przeprowadzono główną analizę składników a także hierarchiczną analizę klastrów, uzyskane dane zostały skompresowane i przedstawione w postaci map i wykorzystane do określania wieloelementowych skojarzeń. Następnie zastosowano metodę fraktali C-A do klasyfikacji map. Strefy zmian hydrotermalnych określone zostały na podstawie danych z systemu ASTER. Pasma ASTER SWIR okazały się najbardziej użyteczne przy identyfikacji zmian w zasobach minerałów, takich jak ałunit, porfiryty, kaolinit, serycyt oraz wapienie. Na podstawie analizy widmowej danych uzyskanych z systemu ASTER SWIR wygenerowano sześć map ukazujących zmiany wielkości złóż. Badania geochemiczne oraz analiza widmowa danych z systemu ASTER wykazały, że zmiany geologiczne i mineralizacja ograniczone są do strefy określonej jako E11b i wykazują tendencję do ułożenia z północnego zachodu w kierunku południowego wschodu od strony wschodniej regionu Khatum Abad do Ghezeljeh- Gheshlaghi.
Rocznik
Strony
37--54
Opis fizyczny
Bibliogr. 40 poz., rys., tab., wykr.
Twórcy
  • Mining Exploration, Faculty of Mining Engineering, Tehran University, Tehran, Iran
  • Geochemical Exploration, Faculty of Mining Engineering, Tehran University, Tehran, Iran
  • Mining Exploration, Faculty of Mining, Petroleum and Geophysics, Shahrood University of Technology, Shahrood, Iran
Bibliografia
  • Alavi M., 2004. Regional Stratigraphy of the Zagros Folded-Thrust belt of Iran and its Proforeland evolution. American Journal of Science, 304, 1-20.
  • Albance S., De Vivo B., Lima A., Cicchella D., 2007. Geochemical background and baseline values of toxic elements instream sediments of campania region (Italy). Journal of Geochemical Exploration, 93, 21-34.
  • Azizi H., Tarverdi M.A., Akbarpour A., 2010. Extraction of hydrothermal alteration from ASTER SWIR data from eastZanjan, Northern Iran. Advances in Space Research, 46, 99-109.
  • Backac M., Kumru M.N., Bassari A., 1999. R-Mod Factor analysis applied to the exploration of radioactivity in theGediz river. Journal of Asian Earth Science, 19, 61-76.
  • Berberian M., King G.C.P., 1981. Towards a Paleogeography and Tectonic evolution of Iran. Canadian Journal of Earth Sciences, 18, 210-265.
  • Carranza E.J.M., 2009. Geochemical Anomaly and Mineral Prospectivity Mapping in Gis. (M. Hale, Ed.) Amsterdam, Netherlands: Elsevier. 347 pages.
  • Carranza E.J.M., 2010a. Mapping of anomalies in continuous and discrete fields of stream sediment geochemical landscapes. Geochemistry: Exploration, Environment, Analysis, 10, 171-187.
  • Carranza E.J.M., 2010b. Catchment basin modelling of stream sediment anomalies revisited: incorporation of EDA andfractal analysis. Geochemistry: Exploration, Environment, Analysis, 10, 365-381.
  • Carranza E.J.M., 2011. Analysis and mapping of geochemical anomalies using logratio-transformed stream sedimentdata with censored values. Journal of Geochemical Exploration, 110, 167-185.
  • Cheng Q., Agterberg F.P., Ballantyne S.B., 1994. The Separation of geochemical anomalies from background by fractalmethods. Journal of Geochemical Exploration, 51, 109-130.
  • Cheng Q., Jing L., Panahi A., 2006. Principal component analysis with optimum order sample correlation. International Journal of Remote Sensing, 27 (16), 3387-3401.
  • Crosta A.P., De Sousa F., Azevedo C., Brodie F., 2003. Targeting key alteration minerals in epithermal deposits inpatagonia, Argentina, using ASTER imagery and principal component analysis. International Journal of Remote Sensing, 24, 4233-4240.
  • Galvao L.S., Filho R.A., Vitorello I., 2005. Use of ASTER short-wave infrared bands for the spectral discrimination ofHydrothermally altered-materials: Central Mexico. International Journal of Remote Sensing, 19, 1981-2000.
  • Gent M., Menendez M., Toraño J., Torno S., 2011. A review of indicator minerals and sample processing methods forgeochemical exploration, Journal of Geochemical Exploration, 110 (2), 47-60.
  • Gonçalves M.A., Mateus A., Oliveira V., 2001. Geochemical Anomaly Separation by multifractal modeling. Journal of Geochemical Exploration, 72, 91-114.
  • Green A.A., Criag M.D., 1985. Analysis of aircraft spectrometer data with logarithmic residuals, in Vane, G., Goetz, A. (Eds). Proceedings of the Airborn Imaging Spectrometer Data Analysis Workshop, JPL Publication, 111-119.
  • Grunsky E.C., Drew L.J., Sutphin D.M., 2009. Process recognition in multi-element soil and stream-sediment geochemicaldata. Applied Geochemistry, 24, 1602-1616.
  • Hassanzadeh J., 1993. Metallogenic and Tectonomagmatic events in the SE sector of the cenozoic active continentalmargin of Iran (Shahre babak area, Kerman province). Unpublished Phd thesis, University of California, Los angles, 191-204.
  • Ji H., Zeng D., Shi Y., Wu Y., Wu X., 2007. Semi-hierararchical correspondence cluster analysis and regionam geochemicalpattern recognition. Journal of Geochemical Exploration, 93, 109-119.
  • Lescuyer J.L., Riou R., 1976. Etude géochimique du volcanise tertiaire de la région de Mianeh (Azarbaijan, Iran). Géologie Alpine, 52, 85-98.
  • Naseem S., Sheikh S.A., Qadeeruddin M., Shirin K., 2002. Geochemical stream sediment survey in wider valley, Balochistan,Pakistan. Journal of Geochemical Exploration, 76, 1-12.
  • Nude P.M., Arhin E., 2009. Overbank sediments as appropriate geochemical sample media in regional stream sedimentsurveys for gold exploration in the savannah regions of northern Ghana. Journal of Geochemical Exploration, 103 (1), 50-56.
  • Olivella M.À., Solé M., Gorchs R., Lao C., De Las Heras F.X.C., 2011. Geochemical Characterization Of A SpanishLeonardite Coal. Archive of Mining Sciences, 56 (4), 789-804.
  • Oyarzun R., Lillo J., López-García J.A., Esbrí J.M., Cubas P., Llanos W., Higueras P., 2011. The Mazarrón Pb-(Ag)-Znmining district (SE Spain) as a source of heavy metal contamination in a semiarid realm: Geochemical data frommine wastes, soils and stream sediments. Journal of Geochemical Exploration, 109 (1-3), 113-124.
  • Rantitch G., 2000. Application of Fuzzy clusters to quantify Lithological background concentrations in stream sedimentgeochemistry. Journal of Geochemical Exploration, 71, 73-82.
  • Regard V., Bellier O., Thomas J.C., Abbassi M.R., Mercier J., Shabanian E., Fegghi K., Soleymani S., 2004. The accommodationof Arabia-Eurasia convergence in the Zagros-Makran transfer zone, SE Iran: a transition betweencollision and subduction through a young deforming system. Tectonics, 23, TC4007, 24 pages.
  • Richards J., 2003., Tectono-Magmatic precursors for geophysical data over a copper gold porphyry Cu-(Mo-Au) depositformation. Economic Geology, 96, 1419-1431.
  • Rowan L.C., Hook S.J., Arams M.J., Mars J.C., 2003. Mapping hydrothermally rocks at the cuprite nevada using theadvanced spaceborne thermal emission and reflection radiometer (ASTER), a new sateiiite-imaging system. Economic Geolog, 98, 1019-1027.
  • Sabins F., 1999. Remote sensing for mineral exploration. Ore Geology Reviews, 14, 157-183.
  • Salminen R.T., 1998. FOREGS Geochemical Mapping Field Manual, Guide 47. Geological Survey of Finland, Espoo , 36 pages.
  • Shahabpour J., 1984. Aspects of Alteration and Mineralization at the Sar-Cheshmeh copper-molybdenum deposit, Kerman,Iran. Unpublished Phd thesis, University of Leeds. 342 pages.
  • Shahabpour J., 1994. Post-Mineral breccia dyke from the Sr-cheshmeh porphyry copper deposit, Kerman, Iran. Exploration and Mining geology, 3, 39-43.
  • Shahabpour J., 1999. The role of deep structures in the distribution of some major ore deposits in Iran, NE of ZagrosThrust Zone. Journal of Geodynamics, 28, 237-250.
  • Shahabpour J., 2005. Tectonic evolution of the orogenic belt in the region located between Kerman and Neyriz. Journal of Asian Earth sciences , 24, 405-417.
  • Singer D.A., 1993. Basic Concepts in three-part quantitative assessments of undiscovered mineral resources. Nonrenewable Resources, 2, 69-81.
  • Stöcklin J., 1968. Structural history and tectonics of Iran; A review. American Association of Petroleum Geologists, Bulletin 52, 1229-1285.
  • Sun X., Deng J., Gong Q., Yang L., Zhao Z., 2009. Kohenen neural network and factor analysis based approach togeochemical data pattern recognition. Journal of Geochemical Exploration, 103, 6-16.
  • Yang F., Mao J., Pirajno F., Yan Sh., Liu G., Zhou G., Zhang Zh., Liu F., Geng X., Guo Ch., 2011. A review of the geologicalcharacteristics and geodynamic setting of Late Paleozoic porphyry copper deposits in the Junggar region, XinjiangUygur Autonomous Region, Northwest China. Journal of Asian Earth Sciences, In Press, Accepted Manuscript.
  • Yousefi M., Kamkar Rouhani A., Carranza E.J.M., 2012. Geochemical mineralization probability index (GMPI): a newapproach to generate enhanced stream sediment geochemical evidential map for increasing probability of successin mineral potential mapping. Journal of Geochemical Exploration, In Press, Accepted Manuscript.
  • Zarasvandi A., Liaghat S., Zentilli M., 2005. Geplogy of the Darreh-Zerreshk and Ali-Abad porphyry copper deposit,central Iran. International Geology Reviews, 47 (6), 620-646.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ef9313b8-6ddc-4937-9296-9abfc227a4bc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.