PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Drug-device systems based on biodegradable metals for bone applications: Potential, development and challenges

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Drug-device systems based on biodegradable metals have been of great interest in the last decade due to their local-release regime and the ability of the biodegradable metals to degrade in the physiological environment facilitating tissue growth and gradual load transfer. The biodegradability of the biodegradable metals provides a promising medium that might enable other materials - such as drugs, bioactive materials and therapeutic agents - to be incorporated into the degradable metals to act as a drug-device system that would locally release the drugs or therapeutic agents onto the healing tissue. In comparison to systemic drug delivery, the locally released drug-device system makes the dose control over a specific targeted tissue more efficient and reduces the side effects on non-targeted tissues. This review outlines the current state of development of the biodegradable metals-based drug-device system and focuses in-depth on the potential interactions between the drugs, degradable metallic surfaces, drug carriers, ions and proteins inside the body fluids, which can be a challenge to producing a highly efficient drug-device system.
Twórcy
  • Materials Research & Consultancy Group (MRCG), Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Johor, Malaysia
  • Center for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
  • Department of Materials, Manufacturing and Industrial Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Johor Bharu, Johor, Malaysia
  • Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bandar Baru Bangi, Selangor, Malaysia
  • Advanced Facilities Engineering Technology Research Cluster (AFET), Plant Engineering Technology (PETech) Section, Universiti Kuala Lumpur Malaysian Institute of Industrial Technology, Masai, Johor, Malaysia
autor
  • Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Malang, Indonesia
  • Center of Advanced Materials for Renewable Energy (CAMRY), Universitas Negeri Malang, Malang, Indonesia
Bibliografia
  • [1] Lyndon JA, Boyd BJ, Birbilis N. Metallic implant drug/device combinations for controlled drug release in orthopaedic applications. J Control Release 2014;179:63-75.
  • [2] Krukiewicz K, Zak JK. Biomaterial-based regional chemotherapy: Local anticancer drug delivery to enhance chemotherapy and minimize its side-effects. Mater Sci Eng C 2016;62:927-42.
  • [3] Wu P, Grainger DW. Drug/device combinations for local drug therapies and infection prophylaxis. Biomaterials 2006;27 (11):2450-67.
  • [4] Md Yusop AH, Al Sakkaf A, Nur H. Modifications on porous absorbable Fe-based scaffolds for bone applications: A review from corrosion and biocompatibility viewpoints. J Biomed Mater Res, Part B 2022;110(1):18-44.
  • [5] Reith G, Schmitz-Greven V, Hensel KO, Schneider MM, Tinschmann T, Bouillon B, et al. Metal implant removal: benefits and drawbacks – a patient survey. BMC Surg 2015;15 (1):96.
  • [6] Md Yusop AH, Ulum MF, Al Sakkaf A, Hartanto D, Nur H. Insight into the bioabsorption of Fe-based materials and their current developments in bone applications. Biotechnol J 2021;16(12):2100255.
  • [7] Chandra G, Pandey A. Biodegradable bone implants in orthopedic applications: a review. Biocybern Biomed Eng 2020;40(2):596-610.
  • [8] Md Yusop AH, Alsakkaf A, Noordin MA, Idris H, Nur H, Szali Januddi F. Degradation-triggered release from biodegradable metallic surfaces. J Biomed Mater Res, Part B 2021;109 (12):2184-98.
  • [9] Hermawan H. Updates on the research and development of absorbable metals for biomedical applications. Prog Biomater 2018;7:93-100.
  • [10] Zheng J-F, Xi Z-W, Li Y, Li J-N, Qiu H, Hu X-Y, et al. Long-term safety and absorption assessment of a novel bioresorbable nitrided iron scaffold in porcine coronary artery. Bioact Mater 2022;17:496-505.
  • [11] Kutlehria S, D’Souza A, Bleier BS, Amiji MM. Role of 3D Printing in the Development of Biodegradable Implants for Central Nervous System Drug Delivery. Mol Pharm 2022.
  • [12] Vujović S, Desnica J, Stanišić D, Ognjanović I, Stevanovic M, Rosic G, Applications of biodegradable magnesium-based materials in reconstructive oral and maxillofacial surgery: A review. 2022; 27(17); 5529.
  • [13] Nouri A, Rohani Shirvan A, Li Y, Wen C. Biodegradable metallic suture anchors: A review. Smart Mater Manuf 2023;1:100005.
  • [14] Tie D, Hort N, Chen M, Guan R, Ulasevich S, Skorb EV, et al. In vivo urinary compatibility of Mg-Sr-Ag alloy in swine model. Bioact Mater 2022;7:254-62.
  • [15] Md Yusop AH, Ulum MF, Al Sakkaf A, Nur H. Current status and outlook of porous Zn-based scaffolds for bone applications: A review. J Bionic Eng 2022;19(3):737-51.
  • [16] Rabeeh VPM, Hanas T. Progress in manufacturing and processing of degradable Fe-based implants: a review. Prog Biomater 2022;11(2):163-91.
  • [17] Rezk AI, Mousa HM, Lee J, Park CH, Kim CS. Composite PCL/HA/simvastatin electrospun nanofiber coating on biodegradable Mg alloy for orthopedic implant application. J Coat Technol Res 2019;16(2):477-89.
  • [18] Zhao Y, Yu S, Wu X, Dai H, Liu W, Tu R, et al. Construction of macroporous magnesium phosphate-based bone cement with sustained drug release. Mater Des 2021;200:109466.
  • [19] Yusop AHM, Alsakkaf A, Kadir MRA, Sukmana I, Nur H. Corrosion of porous Mg and Fe scaffolds: a review of mechanical and biocompatibility responses. Corros Eng, Sci Technol 2021;56(4):1-17.
  • [20] Venezuela J, Dargusch MS. The influence of alloying and fabrication techniques on the mechanical properties, biodegradability and biocompatibility of zinc: A comprehensive review. Acta Biomater 2019;87:1-40.
  • [21] Bakhsheshi-Rad HR, Hamzah E, Staiger MP, Dias GJ, Hadisi Z, Saheban M, et al. Drug release, cytocompatibility, bioactivity, and antibacterial activity of doxycycline loaded Mg-Ca-TiO2 composite scaffold. Mater Des 2018;139:212-21.
  • [22] Ji X-J, Cheng Q, Wang J, Zhao Y-B, Han Z-Z, Zhang F, et al. Corrosion resistance and antibacterial effects of hydroxyapatite coating induced by polyacrylic acid and gentamicin sulfate on magnesium alloy. Front Mater Sci 2019;13(1):87-98.
  • [23] Bakhsheshi-Rad HR, Ismail AF, Aziz M, Hadisi Z, Omidi M, Chen X. Antibacterial activity and corrosion resistance of Ta2O5 thin film and electrospun PCL/MgO-Ag nanofiber coatings on biodegradable Mg alloy implants. Ceram Int 2019;45(9):11883-92.
  • [24] Dayaghi E, Bakhsheshi-Rad HR, Hamzah E, Akhavan-Farid A, Ismail AF, Aziz M, et al. Magnesium-zinc scaffold loaded with tetracycline for tissue engineering application: In vitro cell biology and antibacterial activity assessment. Mater Sci Eng, C 2019;102:53-65.
  • [25] Bakhsheshi-Rad HR, Chen X, Ismail AF, Aziz M, Abdolahi E, and Mahmoodiyan F, Improved antibacterial properties of an Mg-Zn-Ca alloy coated with chitosan nanofibers incorporating silver sulfadiazine multiwall carbon nanotubes for bone implants. 2019; 30(5); 1333-9.
  • [26] Bakhsheshi-Rad HR, Akbari M, Ismail AF, Aziz M, Hadisi Z, Pagan E, et al. Coating biodegradable magnesium alloys with electrospun poly-L-lactic acid-åkermanite-doxycycline nanofibers for enhanced biocompatibility, antibacterial activity, and corrosion resistance. Surf Coat Technol 2019:377 124898.
  • [27] Chen S, Wan P, Zhang B, Yang K, Li Y. Facile fabrication of the zoledronate-incorporated coating on magnesium alloy for orthopaedic implants. J Orthopaed Transl 2020;22:2-6.
  • [28] Bakhsheshi-Rad HR, Ismail AF, Aziz M, Akbari M, Hadisi Z, Khoshnava SM, et al. Co-incorporation of graphene oxide/silver nanoparticle into poly-L-lactic acid fibrous: A route toward the development of cytocompatible and antibacterial coating layer on magnesium implants. Mater Sci Eng C 2020;111:110812.
  • [29] Zhang Y, Lv Y, Liu B, Cao X, Ma X, Hashimoto T, et al. Incorporation of magnesium phosphate into magnesium oxide on MgAg alloy through plasma electrolytic oxidation. Surf Coat Technol 2022;447:128822.
  • [30] He J, Fang J, Wei P, Li Y, Guo H, Mei Q, et al. Cancellous bonelike porous Fe@Zn scaffolds with core-shell-structured skeletons for biodegradable bone implants. Acta Biomater 2021;121:665-81.
  • [31] Sakkaf AA, Januddi FS, Yusop AHM, Nur H. Challenges in the use of Fe-based materials for bone scaffolds applications: Perspective from in vivo biocorrosion. Mater Today Commun 2022;33:104564.
  • [32] Yusop AH, Sarian MN, Januddi FS, Ahmed QU, Kadir MR, Hartanto D, et al. Structure, degradation, drug release and mechanical properties relationships of iron-based drug eluting scaffolds: The effects of PLGA. Mater Des 2018;160:203-17.
  • [33] Ray S, Thormann U, Eichelroth M, Budak M, Biehl C, Rupp M, et al. Strontium and bisphosphonate coated iron foam scaffolds for osteoporotic fracture defect healing. Biomaterials 2018;157:1-16.
  • [34] Su Y, Champagne S, Trenggono A, Tolouei R, Mantovani D, Hermawan H. Development and characterization of silver containing calcium phosphate coatings on pure iron foam intended for bone scaffold applications. Mater Des 2018;148:124-34.
  • [35] He J, Ye H, Li Y, Fang J, Mei Q, Lu X, et al. Cancellous-Bone-like Porous Iron Scaffold Coated with Strontium Incorporated Octacalcium Phosphate Nanowhiskers for Bone Regeneration. ACS Biomater Sci Eng 2019;5(2):509-18.
  • [36] Qin Y, Liu A, Guo H, Shen Y, Wen P, Lin H, et al. Additive manufacturing of Zn-Mg alloy porous scaffolds with enhanced osseointegration: In vitro and in vivo studies. Acta Biomater 2022.
  • [37] Qian J, Zhang W, Chen Y, Zeng P, Wang J, Zhou C, et al. Osteogenic and angiogenic bioactive collagen entrapped calcium/zinc phosphates coating on biodegradable Zn for orthopedic implant applications. Biomater Adv 2022 212792.
  • [38] Zhu D, Su Y, Young ML, Ma J, Zheng Y, Tang L. Biological responses and mechanisms of human bone marrow mesenchymal stem cells to Zn and Mg biomaterials. ACS Appl Mater Interfaces 2017;9(33):27453-61.
  • [39] Zhao L, Zhang Z, Song Y, Liu S, Qi Y, Wang X, et al. Mechanical properties and in vitro biodegradation of newly developed porous Zn scaffolds for biomedical applications. Mater Des 2016;108:136-44.
  • [40] Zhao L, Xie Y, Zhang Z, Wang X, Qi Y, Wang T, et al. Fabrication and properties of biodegradable ZnO nanorods/porous Zn scaffolds. Mater Charact 2018;144:227-38.
  • [41] Zhao L, Wang X, Wang T, Xia Y, Cui C. Mechanical properties and biodegradation of porous Zn-1Al alloy scaffolds. Mater Lett 2019;247:75-8.
  • [42] Swain S, Mishra S, Patra A, Praharaj R, Rautray T. Dual action of polarised zinc hydroxyapatite - guar gum composite as a next generation bone filler material. Mater Today: Proc 2022;62:6125-30.
  • [43] Tong X, Shi Z, Xu L, Lin J, Zhang D, Wang K, et al. Degradation behavior, cytotoxicity, hemolysis, and antibacterial properties of electro-deposited Zn-Cu metal foams as potential biodegradable bone implants. Acta Biomater 2019.
  • [44] Lyu H, He Z, Chan YK, He X, Yu Y, Deng Y. Hierarchical ZnO Nanotube/Graphene Oxide Nanostructures Endow Pure Zn Implant with Synergistic Bactericidal Activity and Osteogenicity. Ind Eng Chem Res 2019;58(42):19377-85.
  • [45] Qu X, Yang H, Jia B, Yu Z, Zheng Y, Dai K. Biodegradable Zn-Cu alloys show antibacterial activity against MRSA bone infection by inhibiting pathogen adhesion and biofilm formation. Acta Biomater 2020;117:400-17.
  • [46] Yazdimamaghani M, Razavi M, Vashaee D, Tayebi L. Surface modification of biodegradable porous Mg bone scaffold using polycaprolactone/bioactive glass composite. Mater Sci Eng C 2015;49:436-44.
  • [47] Shi Y, Pei J, Zhang L, Lee BK, Yun Y, Zhang J, et al. Understanding the effect of magnesium degradation on drug release and anti-proliferation on smooth muscle cells for magnesium-based drug eluting stents. Corros Sci 2017;123:297-309.
  • [48] Emami S, Siahi-Shadbad M, Adibkia K, Barzegar-Jalali M. Recent advances in improving oral drug bioavailability by cocrystals. BioImpacts 2018;8(4):305-20.
  • [49] Sun X, Wei J, Lyu J, Bian T, Liu Z, Huang J, et al. Bone-targeting drug delivery system of biomineral-binding liposomes loaded with icariin enhances the treatment for osteoporosis. J Nanobiotechnol 2019;17(1):10.
  • [50] Kalepu S, Nekkanti V. Insoluble drug delivery strategies: review of recent advances and business prospects. Acta Pharm Sin B 2015;5(5):442-53.
  • [51] Roldán EJ, Quattrocchi O, Araujo GL, Piccinni E. Clinical application of bisphosphonate’s pharmacokinetic principles. Medicina (B Aires) 1997;57(Suppl 1):76-82.
  • [52] Savjani KT, Gajjar AK, Savjani JK. Drug solubility: importance and enhancement techniques. ISRN Pharm 2012;2012:195727.
  • [53] Devadasu VR, Deb PK, Maheshwari R, Sharma P, Tekade RK. Physicochemical, pharmaceutical, and biological considerations in GIT absorption of drugs, in: Dosage form design consideration, R.K. Tekade, Editor. 2018, Academic Press: United States. p. 149-78.
  • [54] Bhalani DV, Nutan B, Kumar A, Singh Chandel AK. Bioavailability enhancement techniques for poorly aqueous soluble drugs and therapeutics. 2022; 10(9); 2055.
  • [55] Coltescu A-R, Butnariuand M, Sarac I. The importance of solubility for new drug molecules. Biomed Pharmacol J 2020;13(2):577-83.
  • [56] Hosey CM, Benet LZ. Experimental ADME and toxicology. In: Chackalamannil S, Rotella D, Ward SE, editors. Comprehensive medicinal chemistry III. Amsterdam.: Elsevier; 2017. p. 102-29.
  • [57] Sareen S, Mathew G, Joseph L. Improvement in solubility of poor water-soluble drugs by solid dispersion. Int J Pharm Invest 2012;2(1):12-7.
  • [58] Johnston S, Dargusch M, Atrens A. Building towards a standardised approach to biocorrosion studies: a review of factors influencing Mg corrosion in vitro pertinent to in vivo corrosion. Sci China Mater 2018;61(4):475-500.
  • [59] Stewart C, Akhavan B, Wise SG, Bilek MMM. A review of biomimetic surface functionalization for bone-integrating orthopedic implants: Mechanisms, current approaches, and future directions. Prog Mater Sci 2019;106:100588.
  • [60] Stollar EJ, Smith DP. Uncovering protein structure. Essays Biochem 2020;64(4):649-80.
  • [61] Wanat K. Biological barriers, and the influence of protein binding on the passage of drugs across them. Mol Biol Rep 2020;47(4):3221-31.
  • [62] Krebs HA. Chemical Composition of Blood Plasma and Serum. Annu Rev Biochem 1950;19(1):409-30.
  • [63] Tan Q, Ding Y, Qiu Z, Huang J. Binding Energy and Free Energy of Calcium Ion to Calmodulin EF-Hands with the Drude Polarizable Force Field. ACS Physical Chemistry Au 2022;2 (2):143-55.
  • [64] Tang N, Skibsted LH. Calcium Binding to Amino Acids and Small Glycine Peptides in Aqueous Solution: Toward Peptide Design for Better Calcium Bioavailability. J Agric Food Chem 2016;64(21):4376-89.
  • [65] Nara M, Morii H, Tanokura M. Coordination to divalent cations by calcium-binding proteins studied by FTIR spectroscopy. Biochimica et Biophysica Acta (BBA) -. Biomembranes 2013;1828(10):2319-27.
  • [66] Kondiah PJ, Choonara YE, Kondiah PPD, Marimuthu T, Kumar P, Du Toit LC, et al., A review of injectable polymeric hydrogel systems for application in bone tissue engineering. 2016; 21 (11); 1580.
  • [67] Miller LN, Blake MJ, Page EF, Castillo HB, Calhoun TR. Phosphate ions alter the binding of daptomycin to living bacterial cell surfaces. ACS Infect Dis 2021;7(11):3088-95.
  • [68] Mardina Z, Venezuela J, Dargusch MS, Shi Z, Atrens A. The influence of the protein bovine serum albumin (BSA) on the corrosion of Mg, Zn, and Fe in Zahrina’s simulated interstitial fluid. Corros Sci 2022;199:110160.
  • [69] Wagener V, Faltz A-S, Killian MS, Schmuki P, Virtanen S. Protein interactions with corroding metal surfaces: comparison of Mg and Fe. Faraday Discuss 2015;180:347-60.
  • [70] Kosmulski M. Compilation of PZC and IEP of sparingly soluble metal oxides and hydroxides from literature. Adv Colloid Interface Sci 2009;152(1):14-25.
  • [71] Dong H, Lin F, Boccaccini AR, Virtanen S. Corrosion behavior of biodegradable metals in two different simulated physiological solutions: Comparison of Mg, Zn and Fe. Corros Sci 2021:182 109278.
  • [72] Orinaková R, Gorejová R, Králová ZO, Orinak A, Shepa I, Hovancová J, et al. Influence of albumin interaction on corrosion resistance of sintered iron biomaterials with polyethyleneimine coating. Appl Surf Sci 2020:509 145379.
  • [73] Dong H, Virtanen S. Influence of bovine serum albumin on biodegradation behavior of pure Zn. J Biomed Mater Res, Part B 2022;110(1):185-94.
  • [74] Liu L, Lu L, Zhang H-J, Wang L-N. Influence of bovine serum albumin on corrosion behaviour of pure Zn in phosphate buffered saline. J Mater Sci: Mater Med 2021;32(9):95.
  • [75] Latour RA. Perspectives on the simulation of protein-surface interactions using empirical force field methods. Colloids Surf, B 2014;124:25-37.
  • [76] Leng C, Hung H-C, Sun S, Wang D, Li Y, Jiang S, et al. Probing the Surface Hydration of Nonfouling Zwitterionic and PEG Materials in Contact with Proteins. ACS Appl Mater Interfaces 2015;7(30):16881-8.
  • [77] Zhang N, Ma J, Melo MAS, Weir MD, Bai Y, Xu HHK. Proteinrepellent and antibacterial dental composite to inhibit biofilms and caries. J Dent 2015;43(2):225-34.
  • [78] Mondal S, Chowdhury S. Recent advances on amino acid modifications via C-H functionalization and decarboxylative functionalization strategies. Adv Synth Catal 2018;360 (10):1884-912.
  • [79] Bedolla PO, Feldbauer G, Wolloch M, Eder SJ, Dörr N, Mohn P, et al. Effects of van der Waals interactions in the adsorption of isooctane and ethanol on Fe(100) surfaces. J Phys Chem C 2014;118(31):17608-15.
  • [80] Livey DT, Murray P. Surface energies of solid oxides and carbides. J Am Ceram Soc 1956;39(11):363-72.
  • [81] Kharat M, Skrzynski M, Decker EA, McClements DJ. Enhancement of chemical stability of curcumin-enriched oilin-water emulsions: Impact of antioxidant type and concentration. Food Chem 2020:320 126653.
  • [82] Priyadarsini KI. The chemistry of curcumin: From extraction to therapeutic agent. Molecules 2014;19(12):20091-112.
  • [83] Prasad S, DuBourdieu D, Srivastava A, Kumar P, Lall R. Metal-curcumin complexes in therapeutics: An approach to enhance pharmacological effects of curcumin. Int J Mol Sci 2021;22(13).
  • [84] Castro W, Navarro M, Biot C. Medicinal potential of ciprofloxacin and its derivatives. Future Med Chem 2013;5 (1):81-96.
  • [85] Quiñones Vélez G, Carmona-Sarabia L, Rodríguez-Silva WA, Rivera Raíces AA, Feliciano Cruz L, Hu T, et al. Potentiating bisphosphonate-based coordination complexes to treat osteolytic metastases. J Mater Chem B 2020;8(10):2155-68.
  • [86] MoleculesCui L, Sun E, Zhang Z-H, Tan X-B, Wei Y-J, Jin X, et al. Enhancement of epimedium fried with suet oil based on in vivo formation of self-assembled flavonoid compound nanomicelles. Molecules 2012;17(11):12984-96.
  • [87] Macha IJ, Ben-Nissan B, Vilchevskaya EN, Morozova AS, Abali BE, Müller WH, et al. Drug delivery from polymer-based nanopharmaceuticals-an experimental study complemented by simulations of selected diffusion processes. Front Bioeng Biotechnol 2019;7(37).
  • [88] Kamaly N, Yameen B, Wu J, Farokhzad OC. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem Rev 2016;116 (4):2602-63.
  • [89] Lee JH, Yeo Y. Controlled drug release from pharmaceutical nanocarriers. Chem Eng Sci 2015;125:75-84.
  • [90] Casalini T, Rossi F, Castrovinci A, Perale G. A perspective on polylactic acid-based polymers use for nanoparticles synthesis and applications. Front Bioeng Biotechnol 2019;7.
  • [91] Yusop A, Daud N, Hermawan H. Development of PLGA-infiltrated porous iron for temporary medical implants. 5th symposium on biodegradable metals. Umang Island, Indonesia: AO Research Institute Davos.
  • [92] Mary CPV, Vijayakumar S, Shankar R. Metal chelating ability and antioxidant properties of Curcumin-metal complexes – A DFT approach. J Mol Graph Model 2018;79:1-14.
  • [93] Ibrahim NS, Leaw WL, Mohamad D, Alias SH, Nur H. A critical review of metal-doped TiO2 and its structure-physical properties-photocatalytic activity relationship in hydrogen production. Int J Hydrogen Energy 2020;45 (53):28553-65.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ef8f59d0-7101-4cf9-bd5c-c10f48b9e5fe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.