PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Diagnosis of Attention Deficit Hyperactivity Disorder with combined time and frequency features

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this study was to build a machine learning model to discriminate Attention Deficit Hyperactivity Disorder (ADHD) patients and healthy controls using information from both time and frequency analysis of Event Related Potentials (ERP) obtained from Electroencephalography (EEG) signals while participants performed an auditory oddball task. The study included 23 unmedicated ADHD patients and 23 healthy controls. The EEG signal was analyzed in time domain by nonlinear brain dynamics and morphological features, and in time-frequency domain with wavelet coefficients. Selected features were applied to various machine learning techniques including; Multilayer Perceptron, Naïve Bayes, Support Vector Machines, k-nearest neighbor, Adaptive Boosting, Logistic Regression and Random Forest to classify ADHD patients and healthy controls. Longer P300 latencies and smaller P300 amplitudes were observed in ADHD patients relative to controls. In fractal dimension calculation relative to the control group, the ADHD group demonstrated reduced complexity. In addition, certain wavelet coefficients provided significantly different values in both groups. Combining these extracted features, our results indicated that Multilayer Perceptron method provided the best classification with an accuracy rate of 91.3% and a high level of reliability of concurrence (Kappa = 0.82). The results showed that combining time and frequency domain features can be a useful and discriminative for diagnostic purposes in ADHD. The study presents a supporting diagnostic tool that uses EEG signal processing and machine learning algorithms. The findings would be helpful in the objective diagnosis of ADHD.
Twórcy
  • Department of Biomedical Engineering, Faculty of Engineering, Erciyes University, 38039 Kayseri, Turkey
autor
  • Department of Physiology, Medical Faculty, Baskent University, Turkey
  • Department of Biomedical Engineering, Engineering Faculty, Erciyes University, Turkey
  • Department of Physiology, Medical Faculty, Kırsehir Ahi Evran University, Turkey
autor
  • Department of Child Psychiatry, Medical Faculty, Erciyes University, Turkey
autor
  • Department of Child Psychiatry, Medical Faculty, Erciyes University, Turkey
  • Electrical and Computer Engineering Department, Villanova University, USA
Bibliografia
  • [1] American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 4th edition. 1994 (DSM-IV).
  • [2] Lazzaro I, Gordon E, Li W, Lim CL, Plahn M, Whitmont. et al. Simultaneous EEG and EDA measures in adolescent attention deficit hyperactivity disorder. Int J Psychophysiol 1999;34:123–34.
  • [3] Peng X, Lin P, Zhang T, Wang J. Extreme learning machine-based classification of ADHD using brain structural MRI data. PLOS ONE 2013;8(11):e79476.
  • [4] Paloyelis Y, Mehta MA, Kuntsi J, Asherson P. Functional magnetic resonance imaging in attention deficit hyperactivity disorder (ADHD): a systematic literature review. Expert Rev Neurother 2007;7(10):1337–56.
  • [5] Sato JR, Hoexter MQ, Castellanos XF, Rohde LA. Abnormal brain connectivity patterns in adults with ADHD: a coherence study. PLoS ONE 2012;7(9):e45671.
  • [6] Monden Y, Dan H, Nagashima M, Dan I, Kyutoku Y, Okamoto M, et al. Clinically-oriented monitoring of acute effects of methylphenidate on cerebral hemodynamics in ADHD children using fNIRS. Clin Neurophysiol 2012;123:1147–57.
  • [7] Silk TJ, Vance A, Rinehart N, Bradshaw JL, Cunnington R. White matter abnormalities in attention-deficit/ hyperactivity disorder: a diffusion tensor imaging study in adult patients. Hum Brain Mapp 2009;30(9):2757–65.
  • [8] Román AC, González AC, Hernández EP, Unturbe FM, Alonso TO, Marquéz JG. The attentional effect in attention deficit/hyperactivity disorder (ADHD) by magnetoencephalography (MEG). Clin Neurophysiol 2008;119(9):e153–4.
  • [9] Gonzalez JJ, Méndez LD, Mañas S, Duque MR, Pereda E, De Vera L. Performance analysis of univariate and multivariate EEG measurements in the diagnosis of ADHD. Clin Neurophysiol 2013;124(6):1139–50.
  • [10] Szuromi B, Czobor P, Komlosi S, Bitter I. P300 deficits in adults with attention deficit hyperactivity disorder: a meta- analysis. Psychol Med 2011;41(7):1529–38.
  • [11] Johnstone SJ, Barry RJ, Clarke AR. Ten years on: a follow-up review of ERP research in attention-deficit/hyperactivity disorder. Clin Neurophysiol 2013;124:644–57.
  • [12] Loo SK, Makeig S. Clinical utility of EEG in attention-deficit/ hyperactivity disorder: a research update. Neurotherapeutics 2012;9(3):569–87.
  • [13] Mueller A, Candrian G, Kropotov JD, Ponomarev VA, Baschera GM. Classification of ADHD patients on the basis of independent ERP components using a machine learning system. Nonlinear Biomed Phys 2010;4(Suppl. 1):S1.
  • [14] Ponomarev VA, Mueller A, Candrian G, Grin-Yatsenko VA, Kropotov JD. Group Independent Component Analysis (gICA) and Current Source Density (CSD) in the study of EEG in ADHD adults. Clin Neurophysiol 2014;125:183–97.
  • [15] Heinrich H, Dickhaus H, Rothenberger A, Heinrich V, Moll GH. Single-sweep analysis of event-related potentials by wavelet networks methodological basis and clinical application. IEEE Trans Biomed Eng 1999;46(7):867–79.
  • [16] Mohammadi MR, Khaleghi A, Nasrabadi A, Rafieivand S, Begol M, Zarafshan H. EEG classification of ADHD and normal children using non-linear features and neural network. Biomed Eng Lett 2016;6:66–73.
  • [17] Sohn H, Kim I, Lee W, Peterson BS, Hong H, Chae JH, et al. Linear and non-linear EEG analysis of adolescents with attention-deficit/hyperactivity disorder during a cognitive task. Clin Neurophysiol 2010;121:1863–70.
  • [18] Alba G, Pereda E, Mañas S, Méndez LD, González A, González JJ. Electroencephalography signatures of attention-deficit/hyperactivity disorder: clinical utility. Neuropsychiatr Dis Treat 2015;11:2755–69.
  • [19] Esteban FJ, Beltrán LD, Di Ieva A. The fractal geometry of the brain. New York: Springer-Verlag; 2016.
  • [20] Sebastián MV, Navascués MA. A relation between fractal dimension and Fourier transform–electroencephalographic study using spectral and fractal parameters. Int J Comput Math 2008;85:657–65.
  • [21] Davila CE, Srebro R. Subspace averaging of steady-state visual evoked potentials. IEEE Trans Biomed Eng 2000;47 (6):720–8.
  • [22] Polich J. Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol 2007;118(10):2128–48.
  • [23] Bush G, Valera EM, Seidman LJ. Functional neuroimaging of attention-deficit/hyperactivity disorder: a review and suggested future directions. Biol Psychiatry 2005;57:1273–84.
  • [24] Kesic S, Spasic SZ. Application of Higuchi's fractal dimension from basic to clinical neurophysiology: a review. Comput Methods Programs Biomed 2016;133:55–70.
  • [25] Higuchi T. Approach to an irregular time series on the basis of the fractal theory. Physica D 1988;31:277–83.
  • [26] Accardo A, Affinito M, Carrozzi M, Bouquet F. Use of the fractal dimension for the analysis of electroencephalographic time series. Biol Cybern 1997;77:339–50.
  • [27] Quiroga RQ, Sakowitz OW, Basar E, Schürmann M. Wavelet transform in the analysis of the frequency composition of evoked potentials. Brain Res Protoc 2001;8:16–24.
  • [28] Brandley AP, Wilson WJ. On wavelet analysis of auditory evoked potentials. Clin Neurophysiol 2004;115:1114–28.
  • [29] Boser BE, Guyon I, Vapnik V. A training algorithm for optimal margin classifiers. Proceedings of the Fifth Annual ACM Conference on Computational Learning Theory; 1992. p. 144–52.
  • [30] Horton P, Nakai K. Better prediction of protein cellular localization sites with the k nearest neighbors classifier. ISMB-97 Proceedings; 1997. p. 147–52.
  • [31] Rish I. An empirical study of the naive Bayes classifier. IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence, vol. 3(22). 2001. pp. 41–6.
  • [32] Rumelhart DE, Hinton GE, Williams RJ. Learning internal representations by error propagation parallel distributed processing: explorations in the microstructure of cognition, Volume 1: Foundation. MIT Press; 1986.
  • [33] Efron B. Bootstrap methods: another look at the jackknife. Ann Stat 1979;7.
  • [34] Kuncheva LI. Combining pattern classifiers: methods and algorithms. John Wiley & Sons; 2014.
  • [35] Menard S. Applied logistic regression. 2nd ed. SAGE; 2002, ISBN 978-0761922087.
  • [36] Cawley GC, Talbot NLC. Fast exact leave-one-out cross-validation of sparse least-squares support vector machines. Neural Netw 2004;17:1467–75.
  • [37] Smeeton NC. Early history of the kappa statistic. Biometrics 1985;41:795.
  • [38] Powers DMW. Evaluation: from precision, recall and F-measure to ROC, informedness, markedness & correlation. J Mach Learn Technol 2011;1:37–63.
  • [39] Tenev A, Markovska-Simoska S, Kocarev L, Pop-Jordanov J, Müller A, Candrian G. Machine learning approach for classification of ADHD adults. Int J Psychophysiol 2014;93:162–6.
  • [40] Goldberger AL, Peng CK, Lipsitz LA. What is physiologic complexity and how does it change with aging and disease? Neurobiol Aging 2002;23:23–6.
  • [41] Nazhvani AD, Boostani R, Afrasiabi S, Sadatnezhad K. Classification of ADHD and BMD patients using visual evoked potential. Clin Neurol Neurosurg 2013;115:2329–35.
  • [42] Ghassemi F, Moradi MM, Doost MT, Abootalebi V. Classification of ADHD normal participants using frequency features of ERP's independent components. Proceedings of the 17th Iranian Conference of Biomedical Engineering (ICBME2010); 2010.
  • [43] Ghassemi F, Moradi MM. Using non-linear features of EEG for ADHD/normal participants classification. Proc Soc Behav Sci 2012;32:148–52.
  • [44] Sadatnezhad K, Boostani R, Ghanizadeh A. Classification of BMD and ADHD patients using their EEG signals. Expert Syst Appl 2011;38(3):1956–63.
  • [45] Yang J, Li W, Wang S, Lu J, Zou L. Classification of children with attention deficit hyperactivity disorder using PCA and K-nearest neighbors during interference control task. Adv Cogn Neurodyn 2016;447–53.
  • [46] Lenartowicz A, Delorme A, Walshaw PD, Cho AL, Bilder RM, McGough JJ, et al. Electroencephalography correlates of spatial working memory deficits in attention-deficit/ hyperactivity disorder: vigilance, encoding, and maintenance. J Neurosci 2014;34:1171–211.
  • [47] Ahmadlou M, Adeli H. Wavelet-synchronization methodology: a new approach for EEG-based diagnosis of ADHD. Clin EEG Neurosci 2010;41:1–10.
  • [48] Alba-Sanchez F, Yanez-Suarez O, Brust-Carmona H. Assisted diagnosis of attentiondeficit hyperactivity disorder through EEG bandpower clustering with self-organizing maps. Conf Proc IEEE Eng Med Biol Soc 2010;2447–50.
  • [49] Vahid A, Bluschke A, Roessner V, Stober S, Beste C. Deep learning based on event-related EEG differentiates children with ADHD from healthy controls. J Clin Med 2019;8(7):1055.
  • [50] Chen H, Song Y, Li X. A deep learning framework for identifying children with ADHD using an EEG-based brain network. Neurocomputing 2019;356:83–96.
  • [51] Kuang D, He L. Classification on ADHD with deep learning. International Conference on Cloud Computing and Big Data. 2014. pp. 27–32.
  • [52] Riaz A, Asad M, Alonso E, Slabaug G. DeepfMRI: end-to-end deep learning for functional connectivity and classification of ADHD using fMRI. J Neurosci Methods 2020;335.
  • [53] Thomas CG, Johnson LG. ADHD: is objective diagnosis possible? Psychiatry (Edgmont) 2005;2(11):44–53.
  • [54] Monden Y, Dan I, Nagashima M, Dan H, Uga M, Ikeda T, et al. Individual classification of ADHD children by right prefrontal hemodynamic responses during a go/no-go task as assessed by fNIRS. Neuroimage Clin 2015;9:1–12.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ef8d5a40-690f-485a-8e52-c0eb15e4aa5e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.