PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Research Output Software for Energetic Materials Based on Observational Modelling 2.2 (RoseBoom2.2©) - Update to Calculate the Specific Impulse, Detonation Velocity, Detonation Pressure and Density for CHNO Mixtures Using the Supersloth-function

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
RoseBoom2.2© can calculate parameters for CHNO mixtures, automatically minimizing user-input. In the present study, RoseBoom’s© results were compared to 518 EXPLO5 calculations. The new version of RoseBoom© can calculate a variety of parameters for mixtures. The detonation pressure and detonation velocity, and the specific impulse were calculated using different methods. In the present study different approaches for calculating the average sum formula have been evaluated
Rocznik
Strony
295--310
Opis fizyczny
Bibliogr. 13 poz., rys., tab., wykr.
Twórcy
  • Department of Chemistry, Energetic Materials Research, Ludwig-Maximilian University of Munich, 81377 Munich, Germany
  • Department of Chemistry, Energetic Materials Research, Ludwig-Maximilian University of Munich, 81377 Munich, Germany
  • RoseExplosive UG (haftungsbeschränkt), Germany
Bibliografia
  • [1] Suceska, M. EXPLO5 ‒ Computer Program for Calculation of Detonation Parameters. Proc. 32nd Int. Annu. Conf. ICT, Karlsruhe, Germany, 2001, 110/1-13.
  • [2] Keshavarz, M.H.; Klapötke, T.M.; Sućeska, M. Energetic Materials Designing Bench (EMDB), Version 1.0. Propellants Explos. Pyrotech. 2017, 42(8): 854-856; DOI: 10.1002/prep.201700144.
  • [3] Software for Energetic Materials and Custom Solutions. Website: https://www.roseexplosive.com/ [accessed on 25.04.2022].
  • [4] Wahler, S.; Klapötke, T.M. Research Output Software for Energetic Materials Based on Observational Modelling 2.1 (RoseBoom2.1©). Mater. Adv. 2022: 1-11; DOI: 10.1039/D2MA00502F.
  • [5] Wahler, S.; Klapötke, T.M. Research Output Software for Energetic Materials Based on Observational Modelling (RoseBoom2.0). Proc. 24th New Trends Res. Energ. Mater. NTREM 2022, Pardubice, Czech Republic, 2022, 110-113.
  • [6] Kamlet, M.J.; Jacobs, S.J. Chemistry of Detonations. I. A Simple Method for Calculating Detonation Properties of CHNO Explosives. J. Chem. Phys. 1968, 48: 23-35; DOI: 10.1063/1.1667908.
  • [7] Stine,J.R. On Predicting Properties of Explosives – Detonation Velocity. J. Energ. Mater. 1990, 8: 41-73; DOI: 10.1080/07370659008017245.
  • [8] Keshavarz, M.H.; Pouretedal, H.R. Predicting Detonation Velocity of Ideal and Less Ideal Explosives via Specific Impulse. Indian J. Eng. Mater. Sci. 2004, 11: 429-432; ISSN: 0975-1017.
  • [9] Frem, D.J. A Reliable Method for Predicting the Specific Impulse of Chemical Propellants. Aerosp. Technol. Manag. 2018, 10: 1-21; DOI: 10.5028/jatm.v10.945.
  • [10] Pachman, J.; Künzel, M.; Němec, O.; Majzlík, J. A Comparison of Methods for Detonation Pressure Measurement. Shock Waves 2018, 28: 217-225; DOI: 10.1007/s00193-017-0761-5.
  • [11] Klapötke, T.M. Chemistry of High-Energy Materials. DeGruyterW, Berlin/Boston, 2019; ISBN: 9783110441390.
  • [12] Şen, N.; Nazir, H.; Atҫeken, N.; Hope, K.S.; Acar, N.; Atakol, O. Synthesis, Characterisation and Energetic Performance of Insensitive Energetic Salts Formed Between Picric Acid and 2,3-Diaminotoluene, 2,4-Diaminotoluene. J. Mol. Struct. 2020, 1205, paper 127580; DOI: 10.1016/j.molstruc.2019.127580.
  • [13] Bozkuş, S.I.; Hope, K.S.; Yüksel, B.; Atҫeken, N.; Nazır, H.; Atakol, O.; Şen, N. Characterization and Properties of a Novel Energetic Co-crystal Formed Between 2,4,6-Trinitrophenol and 9-Bromoanthracene. J. Mol. Struct. 2019, 1192: 145-153; DOI: 10.1016/j.molstruc.2019.04.109.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ef8c74ed-5ff5-4644-800c-e0fbbf0320ff
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.