Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This work is devoted to study the effect of thermal conditions and concentrations on the diffusion permeability of a cation exchange membrane (MK-40) using sodium chloride (NaCl), sodium acetate (C2H3NaO2) and acetic acid (CH3COOH) solutions, which are usually highly concentrated components of pigment yellow 13 of industrial wastewater. A cell containing two compartments was used to analyze the properties of membrane. The results showed that the maximum diffusion permeability coefficients for NaCl, C2H3NaO2, and CH3COOH were 6.08×10-9 m2/s, 13.29×10-11 m2/s, and 25.95×10-11 m2/s, respectively. The increase in the CH3COOH solution concentration was found to improve the diffusion permeability. However, the NaCl and C2H3NaO2 solutions exhibited decreases in diffusion permeability with solution concentration. There was a significant increase in diffusion permeability with temperature.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
140--145
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
- Department of Fuel and Energy Engineering technologies, Technical college Kirkuk, Northern Technical University, Mosul, Iraq
- Department of Technological Processes, Devices and Technosphere Safety, Tambov State Technical University, Tambov, Russia
- Commission for Research and Industrial Development, Ministry of Industry and Minerals, Baghdad, Iraq
- Department of Technological Processes, Devices and Technosphere Safety, Tambov State Technical University, Tambov, Russia
Bibliografia
- 1. Alekseeva, N.V., Arkhipov, A.I., Borisov, P.A. 2012. Study of Diffusive and Osmotic Permeability of MK40 and MA-40 Electrodialysis Membranes in TwoComponent Solutions of Copper, Zinc, Nickel and Sodium Salts. Transactions of the TSTU, 18(4), 923–927.
- 2. Beckingham, B.S., Lynd, N.A., Miller, D.J. 2018. Monitoring multicomponent transport using in situ ATR FTIR spectroscopy. Journal of Membrane Science, 550, 348–356.
- 3. Benkhaya, S., M’rabet, S., El Harfi, A. 2020. Classifications, properties, recent synthesis and applications of azo dyes. Heliyon, 6(1), 1–26.
- 4. Berezina, N.P., Kononenko, N.A., Dyomina, O.A., Gnusin, N.P. 2008. Characterization of ion-exchange membrane materials: Properties vs structure. Advances in Colloid and Interface Science, 139(1-2), 3–28.
- 5. Bogacki, M.B., Michalska, I., Krysztafkiewicz, A. 2004. Application of experimental design for optimization of physicochemical properties of the inorganic pigment, iron (III) silicate. Dyes Pigments, 61(2), 149-164.
- 6. Durán, N., Teixeira, M.F.S., De Conti, R., Esposito, E. 2002. Ecological-Friendly Pigments from Fungi. Critical Reviews in Food Science and Nutrition, 42(1), 53–66.
- 7. Gatapova, N.T., Dzhubari, M.K., Alekseeva, N.V. 2020. A Study of Diffusion Permissibility of MK-40 Membrane in Thermodynamic Conditions. Transactions of the TSTU, 26(4) 619–628.
- 8. Geise, G.M., Paul, D.R., Freeman, B.D. 2014. Fundamental water and salt transport properties of polymeric materials. Prog. Polym. Scie, 39(1), 1–42.
- 9. Han, B., Carvalho, W., Canilha, L., da Silva, S.S., Almeida e Silva, J.B., McMillan, J.D., Wickramasinghe, S.R. 2006. Adsorptive membranes vs. resins for acetic acid removal from biomass hydrolysates. Desalination, 193(1–3), 361–366.
- 10. Izquierdo-Gil, M.A., Villaluenga, J.P.G., Muñoz, S. Barragán, V.M. 2020. The Correlation between the Water Content and Electrolyte Permeability of Cation-Exchange Membranes. International Journal of Molecular Sciences, 21(16), 1–11.
- 11. Jaroszek, H. & Dydo, P. 2016. Ion-exchange membranes in chemical synthesis – a review. Open Chemistry, 14(1), 1–19.
- 12. Kawaguchi, M., Murata, T., Tanioka, A. 1997. Membrane potentials in charged membranes separating solutions of weak electrolytes. Journal of the Chemical Society, Faraday Transactions, 93(7), 1351–1356.
- 13. Kingsbury, R.S., Zhu, S., Flotron, S., Coronell, O. 2018. Microstructure Determines Water and Salt Permeation in Commercial Ion-Exchange Membranes. ACS Applied Materials & Interfaces, 10(46), 39745–39756.
- 14. Malik, K., Tokkas, J., Goyal, S. 2012. Microbial pigments: A review. Int. J. Microbial. Resour. Technol, 1(4), 361–365.
- 15. Melnikov, S, Kolot, D, Nosova, E, Zabolotskiy, V. 2018. Peculiarities of transport structural parameters of ion-exchange membranes in solutions containing anions of carboxylic acids. Journal of Membrane Science, 557, 1–12.
- 16. Nigam, P., Pandey, A., Babitha, S. 2009. Microbial pigments biotechnology for agro-industrial residues utilisation, ed: Springer, Dordrecht, 147–162.
- 17. Pismenskaya, N., Melnik, N., Nevakshenova, E., Nebavskaya, K., Nikonenko, V. 2012. Enhancing Ion Transfer in Overlimiting Electrodialysis of Dilute Solutions by Modifying the Surface of Heterogeneous Ion-Exchange Membranes. International Journal of Chemical Engineering, 2012, 1–11.
- 18. Sarapulova, V., Shkorkina, I., Mareev, S., Pismenskaya, N., Kononenko, N., Larchet, C., Dammak, L. Nikonenko, V. 2019. Transport Characteristics of Fujifilm Ion-Exchange Membranes as Compared to Homogeneous Membranes АМХ and СМХ and to Heterogeneous Membranes MK-40 and MA-41. Membranes, 9(7), 1–23.
- 19. Strathmann, H., Grabowski, A., Eigenberger, G. 2013. Ion-Exchange Membranes in the Chemical Process Industry. Ind. Eng. Chem. Res, 52(31), 10364–10379.
- 20. Vasil’eva, V.I., Akberova, E.M., Zhiltsova, A.V., Chernykh, E.I., Sirota, E.A., Agapov, B.L. 2013. SEM diagnostics of the surface of MK-40 and MA40 heterogeneous ion-exchange membranes in the swollen state after thermal treatment. Journal of Surface Investigation. X-Ray, Synchrotron and Neutron Techniques, 7(5), 833–840.
- 21. Wagner, K.G., McGinity, J.W. 2002. Influence of chloride ion exchange on the permeability and drug release of Eudragit RS 30 D films. Journal of Controlled Release, 82(2-3), 385–397.
- 22. Wang, Q., Chen, G.Q., Kentish, S.E. 2020. Sorption and diffusion of organic acid ions in anion exchange membranes: Acetate and lactate ions as a case study. Journal of Membrane Science, 614, 1–10.
- 23. Zhang, X., Li, C., Wang, Y., Luo, J., Xu, T. 2011. Recovery of acetic acid from simulated acetaldehyde wastewaters: Bipolar membrane electrodialysis processes and membrane selection. Journal of Membrane Science, 379(1-2), 184–190.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ef8c51d1-09e6-488a-8a20-5f0501cd1960