PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Aerodynamic Design Methodology for Air Propellers of Swarm UAVs under Variable Mission Payloads

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study presents an aerodynamic design methodology for fixed- and variable-pitch air propellers (APs) for swarm unmanned aerial vehicles (UAVs), based on vortex theory. The methodology integrates design calculations with system analysis, mathematical modeling, and parametric simulations to evaluate aerodynamic and flight characteristics under diverse operational scenarios. The results demonstrate that UAV flight range and endurance are strongly influenced by payload configuration, flight altitude, and velocity, with bomb load having a particularly significant impact. Verification calculations confirm that one of the most critical factors in improving UAV performance is the design of mission-specific propellers. To address this, we propose a modular approach in which UAVs are equipped with sets of interchangeable APs, each optimized for distinct combat tasks and payloads. This approach enables flexible mission adaptation while maintaining efficiency across flight regimes, providing a practical pathway toward enhancing the performance of tactical swarm UAVs.
Rocznik
Strony
41--61
Opis fizyczny
Bibliogr. 21 poz., fot., rys., tab., wzory
Twórcy
  • Ivan Kozhedub Kharkov National Air Force University, 77/79 Sumska St., Kharkiv, Ukraine, 61023
  • Ivan Kozhedub Kharkov National Air Force University, 77/79 Sumska St., Kharkiv, Ukraine, 61023
  • Ivan Kozhedub Kharkov National Air Force University, 77/79 Sumska St., Kharkiv, Ukraine, 61023
  • JSC FED, 132 Sumska St., Kharkiv, Ukraine, 61023
Bibliografia
  • [1] Xin H, Dang F, Wang J, Zhang K, Wang Y, Pang X. Analysis of UAV swarm combat technology development trend. In: Zhu ZH, Wei X, Li R, editors. Trends in advanced unmanned aerial systems. ICAUAS 2024. Singapore: Springer; 2025. p. 80-86. https://doi.org/10.1007/978-981-96-3240-4_9.
  • [2] Khelifi M, Butun I. Swarm unmanned aerial vehicles (SUAVs): A comprehensive analysis of localization, recent aspects, and future trends. J Sensors. 2022;2022:8600674. https://doi.org/10.1155/2022/8600674.
  • [3] Loginov V, et al. Determining the aerodynamic characteristics of a propeller-driven anti-UAV fighter while designing air propellers. Trans Aerosp Res. 2021;2021(4):53-67. https://doi.org/10.2478/tar-2021-0023.
  • [4] Huei FH, Hiong T, Maqsood A. Propeller-induced effects on the aerodynamics of a small unmanned aerial vehicle. J Aerosp Technol Manag. 2012;4(4):475-80. https://doi.org/10.5028/jatm.2012.04043112
  • [5] Cruzatty C, Sarmiento E, Valencia E, et al. Design methodology of a UAV propeller implemented in monitoring activities. Mater Today Proc. 2021. https://doi.org/10.1016/j.matpr.2021.07.481
  • [6] Svorcan J, Hasan MS, Baltić M, Simonović A. Optimal propeller design for future HALE UAV. Struct Integr Life. 2019;19(2):25-32. https://doi.org/10.5937/str1902025S
  • [7] Pholdee N, Bureerat S, Nuantong W, Pongsatitpat B. Kriging surrogate-based optimization for shape design of thin electric propeller. J Eng Technol Sci. 2024; 56(3). https://doi.org/10.5614/j.eng.technol.sci.2024.56.3.8
  • [8] Esakki B, Gokul Raj P, Yang LJ, Vikram P, Khurana E, Khute S. Computational fluid dynamic analysis of amphibious unmanned aerial vehicle. J Appl Comput Mech. 2022;8(2):475-84. https://doi.org/10.22055/JACM.2020.32461.2018
  • [9] Hoyos JD, Jiménez JH, Echavarría C, Alvarado JP, Urrea G. Aircraft propeller design through constrained aero-structural particle swarm optimization. Aerospace. 2022;9:153. https://doi.org/10.3390/aerospace9030153
  • [10] Hoyos JD, et al. Aircraft propeller design. IOP Conf Ser Mater Sci Eng. 2021;1154:012016. https://doi.org/10.1088/1757-899X/1154/1/012016.
  • [11] Bezpalyi VA, Pushylin OYe. Udoskonalena metodyka vyznachennia osnovnykh kharakterystyk povitrianoho hvynta dvyhuna litaka [Improved methodology for determining the main characteristics of an aircraft engine propeller]. Aktualni pytannia vyprobuvan ta sertyfikatsii ozbroiennia ta viiskovoi tekhniky. 2024. https://doi.org/10.37701/ts.03.2024.01. (in Ukrainian)
  • [12] Chang A, Pik E, Deters RW. Empirical propeller mass sizing for small-scale aircraft. In: AIAA Scitech 2024 Forum. Reston, VA: AIAA; 2024. https://doi.org/10.2514/6.2024-4130.
  • [13] Effect of groove size on aerodynamic performance of a low Reynolds number UAV propeller. INCAS Bull. 2022;14(1):171-86. https://doi.org/10.13111/2066-8201.2022.14.1.14.
  • [14] Raja V, Raji AP, Madasamy SK, Bernard FA, Rameshbabu V, Mathaiyan V, Kulandaiyapan NK. Investigations on selection of suitable propellers for high payload based unmanned aerial vehicles using advanced computational simulations. In: Proceedings of ASME Gas Turbine India Conference. 2021. https://doi.org/10.1115/GTINDIA2021-68678.
  • [15] Zhu H, Jiang Z, Zhao H, Pei S, Li H, Lan Y. Aerodynamic performance of propellers for multirotor unmanned aerial vehicles: Measurement, analysis, and experiment. Int J Aerosp Eng. 2021;2021:9538647. https://doi.org/10.1155/2021/9538647.
  • [16] Jiao J, Song B, Zhang Y, Li Y. Optimal design and experiment of propellers for high altitude airship. Proc Inst Mech Eng G J Aerosp Eng. 2018;232(10):1887-902. https://doi.org/10.1177/0954410017739984.
  • [17] Loginov V, Ukrainets Y, Humennyi A, Yelans’ky O, Konyshev D, Spirkin Y, Bezdielnyi V. Design of the parametric appearance of the power plant for modifications of the regional passenger aircraft An-158. East Eur J Enterp Technol. 2023;4(1):35-52. https://doi.org/10.15587/1729-4061.2023.284806.
  • [18] Loginov V, Ukrainets Y, Kravchenko I, Yelans’ky O, Fil S, Pushylin O. Regional passenger aircraft type An-158 with a hybrid propulsion parametric concept. Trans Aerosp Res. 2024;4(277):14-26. https://doi.org/10.2478/tar-2024-0020.
  • [19] Setlak L, Kowalik R, Lusiak T. Practical use of composite materials used in military aircraft. Materials. 2021;14(17):4812. https://doi.org/10.3390/ma14174812.
  • [20] Kastorskii VE, Kurochkin FP. Prakticheskie raboty po kursu vozdushnykh vintov [Practical works on the course of air propellers]. Moscow: Izdanie VVIA; 1948. 146 p. (in Russian)
  • [21] Varukha IM, Bychkov VD, Smolenskii EL. Prakticheskaia aerodinamika samoleta An-12 [Practical aerodynamics of the An-12 aircraft]. Moscow: Transport; 1971. 180 p. (in Russian)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ef860d21-ee09-4890-ab1c-19495c86045d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.