Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents a novel polarisation-optical method for the automated inspection of surface defects in railway rails. The proposed approach is based on the detection of changes in the polarisation state of reflected laser radiation, caused by local anomalies such as cracks, residual stress zones, and surface contamination. A differential signal is generated by separating orthogonal polarisation components using a polarising beam splitter, enabling high sensitivity to surface irregularities while suppressing common-mode noise. To improve the interpretability of the acquired signal, a multi-stage digital processing pipeline is employed. It includes moving average and Gaussian filtering, threshold-based segmentation, and frequency-domain analysis using both discrete Fourier and continuous wavelet transforms. The method was validated through a set of simulated signals, imitating typical rail defects in noisy conditions. The results demonstrate reliable detection and localisation of structural anomalies, with a clear distinction between sharp discontinuities and wide modulations caused by tension. Due to its compatibility with automated processing frameworks, the method is well suited for integration with modern diagnostic platforms, including mobile rail inspection systems. This makes it a promising candidate for predictive maintenance strategies and digital transformation of railway infrastructure monitoring.
Wydawca
Czasopismo
Rocznik
Tom
Strony
art. no. e155876
Opis fizyczny
Bibliogr. 47 poz., rys., wykr., tab.
Twórcy
autor
- Taizhou Institute of Zhejiang University, Taizhou, China
- Chernivtsi National University, Chernivtsi, Ukraine
autor
- Chernivtsi National University, Chernivtsi, Ukraine
autor
- Taizhou Institute of Zhejiang University, Taizhou, China
- Chernivtsi National University, Chernivtsi, Ukraine
autor
- Taizhou Institute of Zhejiang University, Taizhou, China
Bibliografia
- [1] Kaewunruen, S., Sussman J. M. & Matsumoto, A. Grand challenges in transportation and transit systems. Front. Built Environ. 2, 4 (2016). https://doi.org/10.3389/fbuil.2016.00004.
- [2] de Melo, A. L. O., Kaewunruen, S., Papaelias, M. & Bernucci, L. L. B. Methods to monitor and evaluate the deterioration of track and its components in a railway in-service: A systematic review. Front. Built Environ. 6, 118 (2020). https://doi.org/10.3389/fbuil.2020.00118.
- [3] Bianchi, G., Fanelli, C., Freddi, F., Giuliani, F. & La Placa, A. Systematic review railway infrastructure monitoring: From classic techniques to predictive maintenance. Adv. Mech. Eng. 17, 128563 (2025). https://doi.org/10.1177/16878132241285631.
- [4] International Organization for Standardization (ISO). Non-destructive testing - Ultrasonic testing - General principles. ISO 16810, 2nd ed. (ISO, 2024). https://doi.org/10.31030/3582259.
- [5] Xue, Z., Xu, Y., Hu, M. & Li, S. Systematic review: Ultrasonic technology for detecting rail defects. Constr. Build. Mater. 368, 130409 (2023). https://doi.org/10.1016/j.conbuildmat.2023.130409.
- [6] Tyystjärvi, T., Jessen-Juhler, O., Koskinen, T. & Virkkunen, I. AI-assisted ultrasonic testing of rails - A case study. in Proceedings of the 61st Annual British Conference on Non-Destructive Testing 1-6 (The British Institute of Non-Destructive Testing, 2024). https://doi.org/10.1784/ndt2024.4b1.
- [7] Zhang, G., Song, Z., Osotuyi, A. G., Lin, R. & Chi, B. Railway traffic monitoring with trackside fiber-optic cable by distributed acoustic sensing technology. Front. Earth Sci. 10, 990837 (2022). https://doi.org/10.3389/feart.2022.990837.
- [8] Mi, Z., Chen, R. & Zhao, S. Research on steel rail surface defects detection based on improved YOLOv4 network. Front. Neurorobotics 17, 1119896 (2023). https://doi.org/10.3389/fnbot.2023.1119896.
- [9] He, Z., Gao, X., Liu, Z., An, X. & Zheng, A. Rail surface defect data enhancement method based on improved ACGAN. Front. Neurorobotics 18, 1397369 (2024). https://doi.org/10.3389/fnbot.2024.1397369.
- [10] Xiong, Z., Li, Q., Mao, Q. & Zou, Q. A 3D laser profiling system for rail surface defect detection. Sensors 17, 1791 (2017). https://doi.org/10.3390/s17081791.
- [11] ASTM International. ASTM Standard Guide for Magnetic Particle Testing E709-15. https://store.astm.org/e0709-15.html (2015).
- [12] DIN EN ISO 15548‑1:2013. Non‑destructive testing - Equipment for eddy current examination - Part 1: Instrument characteristics and verification. https://www.dinmedia.de/en/standard/din-en-iso-15548-1/198360517 (2013).
- [13] Zhao, Y. et al. A review on rail defect detection systems based on wireless sensors. Sensors 22, 6409 (2022). https://doi.org/10.3390/s22176409.
- [14] Lomaka, S. & Strynadko, M. Hybrid control system for maglev tracks with enhanced accuracy and resistance to contamination. Young Sci. 1, 25 (2025). https://doi.org/10.32839/2304-5809/2025-1-132-25 (in Ukrainian).
- [15] Sresakoolchai, J. & Kaewunruen, S. Detection and severity evaluation of combined rail defects using deep learning. Vibration 4, 341-356 (2021). https://doi.org/10.3390/vibration4020022.
- [16] Bojarczak, P. Application of wavelet transform into precise localization of railway rail edges in visual diagnostic of track. Arch. Transp. 24, 1-16 (2012). https://doi.org/10.2478/v10174-012-0001-9.
- [17] Mackiewicz, S. et al. Modeling of acoustic coupling of ultrasonic probes for high-speed rail track inspection. Arch. Acoust. 49, 255-266 (2024). https://doi.org/10.24425/aoa.2024.148787.
- [18] Rucki, M., Gockiewicz, A. & Szumiata, T. Evaluation of the residual magnetic field measurement system for early identification of railway defects. Metrol. Meas. Syst. 26, 687-696 (2019). https://doi.org/10.24425/mms.2019.130568.
- [19] Yu, Z., Wang, Y. & Wu, X. Defect detection method for large-curvature and highly reflective surfaces based on polarization imaging and improved YOLOv11. Photonics 12, 1234 (2025). https://doi.org/10.3390/photonics12040368.
- [20] Kou, L., Sysyn, M., Fischer, S., Liu, J. & Nabochenko, O. Optical rail surface crack detection method based on semantic segmentation replacement for magnetic particle inspection. Sensors 22, 8214 (2022). https://doi.org/10.3390/s22218214.
- [21] Lian, Y. et al. Simulation and experimental research of V-crack testing of rail surfaces based on laser ultrasound. Photonics 11, 920 (2024). https://doi.org/10.3390/photonics11100920.
- [22] Xu, P., Zhu, C. L., Zeng, H. M. & Wang, P. Rail crack detection and evaluation at high speed based on differential ECT system. Measurement 166, 108152 (2020). https://doi.org/10.1016/j.measurement.2020.108152.
- [23] Meyer, K. A., Gren, D., Ahlström, J. & Ekberg, A. A method for in-field railhead crack detection using digital image correlation. Int. J. Rail Transp. 10, 675-694 (2022). https://doi.org/10.1080/23248378.2021.2021455.
- [24] Dickheuer, S. et al. (2019). Polarization by light reflection at metallic surfaces observed in the shape of the Balmer-α line of low-temperature hydrogen plasmas. Phys. Plasmas 26, 073513 (2019). https://doi.org/10.1063/1.5088931.
- [25] Hüttner, B. On Brewster’s angle of metals. J. Appl. Phys. 78, 4799-4801 (1995). https://doi.org/10.1063/1.359763.
- [26] Angelsky, O. V., Mokhun, I. I., Bekshaev, A. Y., Zenkova, C. Y. & Zheng, J. Polarization singularities: Topological and dynamical aspects. Front. Phys. 11, 1147788 (2023). https://doi.org/10.3389/fphy.2023.1147788.
- [27] Angelsky, O. V., Bekshaev, A. Y., Vasnetsov, M. V., Maksimyak, P. P. & Zheng, J. Optical phase singularities: Physical nature, manifestations and applications. Front. Phys. 10, 1060787 (2022). https://doi.org/10.3389/fphy.2022.1060787.
- [28] Angelsky, O. V. et al. Fluorescence record diagnostics of 3D rough-surface landscapes with nano-scale inhomogeneities. Front. Phys. 9, 787821 (2022). https://doi.org/10.3389/fphy.2021.787821.
- [29] Angelsky, O. V. et al. Review on the structured light properties: Rotational features and singularities. Opto-Electron. Rev. 30, e140860 (2022). https://doi.org/10.24425/opelre.2022.140860.
- [30] Angelsky, O. V., Ushenko, A. G., Ushenko, Y. A. & Pishak, V. P. Statistical and Fractal Structure of Biological Tissue Mueller Matrix Images. in Optical Correlation Techniques and Applications(ed. Angelsky, O. V.) 213-265 (SPIE Press, 2007). https://doi.org/10.1117/3.714999.ch4.
- [31] Das, T. & Bhattacharya, K. Topometry of metal surfaces using reflection of polarized light. Optik 243, 167448 (2021). https://doi.org/10.1016/j.ijleo.2021.167448.
- [32] Cui, Z. et al. Ultra-compact and high-precision differential detection method based on liquid crystal polarization grating for miniature atomic magnetometer. Nanophotonics 13, 4255-4265 (2024). https://doi.org/10.1515/nanoph-2024-0309.
- [33] Lu, Y. et al. Recent progress of atomic magnetometers for geomagnetic applications. Sensors 23, 5318 (2023). https://doi.org/10.3390/s23115318.
- [34] Li, R. et al. Investigation of surface defects in optical components based on reflection Mueller matrix spectroscopy. Appl. Sci. 13, 9294 (2023). https://doi.org/10.3390/app13169294.
- [35] Kim, H.-S., Park, D.-W., Kim, S.-I., Oh, G.-H. & Kim, H.-S. (2023). Non-destructive detection of thin micro-defects in glass reinforced polymer composites using a terahertz electro-magnetic wave based on a convolution neural network. Compos. B: Eng. 257, 110694 (2023). https://doi.org/10.1016/j.compositesb.2023.110694.
- [36] Mayorga-Cruz, D., Márquez-Aguilar, P. A., Sarmiento-Martínez, O. & Uruchurtu-Chavarín, J. Investigation of corrosion processes in metallic samples by optical and electrochemical methods. Opt. Lasers Eng. 45, 953-959 (2007). https://doi.org/10.1016/j.optlaseng.2007.03.001.
- [37] Ali, J. H., Wang, W. B., Ho, P. P. & Alfano, R. R. Detection of corrosion beneath a paint layer by use of spectral polarization optical imaging. Opt. Lett. 25, 1303-1305 (2000). https://doi.org/10.1364/OL.25.001303.
- [38] Morel, O. & Gorria, P. Polarization imaging for 3D inspection of highly reflective metallic objects. Opt. Spectrosc. 101, 11-17 (2006). https://doi.org/10.1134/S0030400X06070034.
- [39] Hatakeyama, T., Ichinoseki, K., Fukuda, K., Higuchi, N. & Arai, K. Evaluation of the quality of commercial silicon carbide wafers by an optical non-destructive inspection technique. J. Cryst. Growth 310, 988-992 (2008). https://doi.org/10.1016/j.jcrysgro.2007.11.141.
- [40] Zhang, H.-Y., Wang, Z.-H. & Fu, H.-Y. Automatic scratch detector for optical surface. Opt. Express 27, 20910-20927 (2019). https://doi.org/10.1364/OE.27.020910.
- [41] Song, B. et al. Investigation polarimetric scattering of light from the randomly rough surface based on the calculation of the Mueller matrix. Opt. Express 31, 24796-24809 (2023). https://doi.org/10.1364/OE.492780.
- [42] Hu, W. et al. Fe-C-coated fiber Bragg grating sensor for steel corrosion monitoring. Corros. Sci. 53, 1933-1939 (2011). https://doi.org/10.1016/j.corsci.2011.02.012.
- [43] Hou, W., Tao, X. & Xu, D. Combining prior knowledge with CNN for weak scratch inspection of optical components. IEEE Trans. Instrum. Meas. 70, 1-11 (2021). https://doi.org/10.1109/TIM.2020.3011299.
- [44] Bass, M. Handbook of Optics. Vol. I: Fundamentals, Techniques, and Design. (McGraw-Hill, (2010).
- [45] Born, M. & Wolf E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Ligh, 7th edition. (Cambridge University Press, 1999).
- [46] Devasahayam, S. R. Discrete Signal Processing. in Signals and Systems in Biomedical Engineering. Signal Processing and Physiological Systems Modeling, 2nd ed. 121-171 (Springer, 2013). https://doi.org/10.1007/978-1-4614-5332-1_6.
- [47] Mallat, S. A. Wavelet Tour of Signal Processing: The Sparse Way, 3rd ed. (Academic Press, 2008).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ef764f7c-e248-4434-8bf4-ff03ee7b1400
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.