PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Leachability of heavy metals from autoclaved fly ash-lime building bricks

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wymywalność metali ciężkich z autoklawizowanych cegieł z popiołu lotnego i wapna
Języki publikacji
EN
Abstrakty
EN
The fly ash as a byproduct of coal-fired power plants constitutes vital ecological problems. In Turkey, approximately 15 million tons of ashes are generated via the combustion of 40 million tons of lignite yearly. Worldwide, a number of investigation and applications were undertaken to utilize fly ash in order to overcome the environmental problems. One of the application area of fly ashes is the production of building bricks. Characterization of fly ash samples from Seyitomer and Yatagan coal-firing power plants were conducted in this study. TCLP 1311, ASTM3987-85 and EN 12457-2 leaching tests on the cylindrical fly ash/lime brick (FA/LB) samples which were produced from Seyitomer and Yatagan thermal power plant fly ash-lime mixtures were performed to determine the leachability of some chosen trace elements. e results show that the release of all trace elements was lower than the hazardous material limit values of waste acceptance. us, non- fired fly ash bricks are an advantageous way to solving environmental effect of disposal of fly ashes.
PL
Popiół lotny jako uboczny produkt spalania w elektrowniach węglowych stanowi istotny problem ekologiczny. W Turcji w wyniku spalania 40 mln ton węgla brunatnego rocznie powstaje około 15 mln ton popiołów. Na całym świecie podjęto szereg badań w celu wykorzystania popiołu lotnego w celu przezwyciężenia problemów środowiskowych. Jednym z obszarów zastosowania popiołów lotnych jest produkcja cegieł budowlanych. W pracy przedstawiono wyniki badania charakterystyki próbek popiołu lotnego z elektrowni węglowych Seyitomer i Yatagan. Przeprowadzono testy ługowania wybranych pierwiastków śladowych, zgodnie z normami TCLP 1311, ASTM3987-85 i EN 12457-2 na cylindrycznych próbkach popiołu lotnego/ cegieł wapiennych (FA / LB), które zostały wyprodukowane z mieszanek popiołu lotnego i wapna w elektrowniach Seyitomer i Yatagan. Wyniki pokazują, że uwalnianie wszystkich pierwiastków śladowych było niższe niż dopuszczalne wartości dla materiałów niebezpiecznych. Zatem niewypalane cegły z popiołu lotnego są korzystnym sposobem rozwiązania problemu środowiskowego wpływu usuwania popiołów lotnych.
Rocznik
Tom
Strony
67--74
Opis fizyczny
Bibliogr. 49 poz., rys., zdj.
Twórcy
  • Dokuz Eylul University, Faculty of Engineering, Dept. of Mining Engineering, Tınaztepe Campus, 35160, Buca–Izmir, Turkey
  • Dokuz Eylul University, Faculty of Engineering, Dept. of Mining Engineering, Tınaztepe Campus, 35160, Buca–Izmir, Turkey
autor
  • Dokuz Eylul University, Faculty of Engineering, Dept. of Mining Engineering, Tınaztepe Campus, 35160, Buca–Izmir, Turkey
autor
  • Dokuz Eylul University, Faculty of Engineering, Dept. of Mining Engineering, Tınaztepe Campus, 35160, Buca–Izmir, Turkey
autor
  • Virginia Polytechnic Institute and State University, Dept. of Mining Engineering, Blacksburg, Virginia, United States
Bibliografia
  • 1. Akar G (2001) Determination of Heavy Metal Contamination Resulting from Coal Ash Disposal Areas M.Sc. "esis. Dokuz Eylul University, Izmir.
  • 2. Akar G, Arslan V, Ipekoglu U, Tekir U (2010) Acid-base production potentials of ash bearing samples from Soma and Yatagan power plants in Turkey, XVI International Coal Preparation Congress. 937–946.
  • 3. Akar G, Polat M, Galecki G, Ipekoglu U. (2012) Leaching behavior of selected trace elements in coal fly ash samples fromYenikoy coal-fired power plants, Fuel Process. Technol. 104 50–56.
  • 4. ASTM (2004) D-3987-85, standard test method for shake extraction of solid waste with water, Annual Book of ASTM Standards; Section 11: Water and Environmental Technology, ASTM D3987-85.
  • 5. ASTM C 204-11 (2005) Standard test methods for fineness of hydraulic cement by air- permeability apparatus, Pennsylvania, United States, 19428–2959.
  • 6. ASTM C 618 (2000) Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use as a Mineral Admixture in Concrete.
  • 7. Ball MC, Carroll RA (1999) Studies of hydrothermal reactions of UK pulverized ashes. Part 1: reactions between pulverized fuel ash and calcium hydroxide, Adv. Cem. Res. 11 2 53–61.
  • 8. Bağcı, S.A., Ekiz, H. and Yılmaz, A., 2003. Determination of the salt tolerance of some barley genotypes and the characteristics affecting tolerance. Turkish Journal of Agriculture and Forestry, 27, 253-260.
  • 9. Bayat O. (1998) Characterization of Turkish Fly Ashes. Fuel, 77 1059-1066.
  • 10. C. Decision, 2003/33/EC (2003) Establishing criteria and procedures for the acceptance of waste at landfills pursuant to Article 16 of and Annex II to Directive 1999/31/EC, 11 27–49.
  • 11. Cappuyns V, Swennen R. (2008) "e application of pH stat leaching tests to assess the pH-dependent release of trace metals from soils, sediments and waste materials. J. Hazard. Mater. 158 185–195.
  • 12. Carlson CL, Andriano DC (2005) Environmental impacts of coal combustion residues, J. Environ. Qual. 1993, 22 227–247.ASTM C 204-11, Standard test methods for fineness of hydraulic cement by air-permeability apparatus, Pennsylvania, United States, 19428–2959.
  • 13. CEN (2002) Characterization of waste Leaching Compliance test for leaching of granular waste material and sludge. Part 2: One stage batch test at a liquid to solid ratio of 10 L/kg with article size below 4 mm (without or with size reduction). Brussels: Comite Europeen de Normalisation. EN 12457–2.
  • 14. Cetin B, Aydilek AH, Guney Y (2012) Leaching of Trace metals from high carbon fly ash stabilized highway base layers, Resources, Conservation and Recycling, 58 11, 8-17.
  • 15. Cicek T, Cincin Y (2015) Use of fly ash in production of light-weight building bricks, Construction and Building Materials, 94 521-527.
  • 16. Cinquepalmi MA, Mangialard T, Panei L, Paolini AE, Piga L (2008) Reuse of cement-solidified municipal incinerator fly ash in cement mortars: Physico-mechanical and leaching characteristics, J. Hazard. Mater. 51 (2-3) 585-593.
  • 17. Dahl O, Poykio R, Nurmesniemi H (2008) Concentrations of heavy metals in fly ash from a coal-fired power plant with respect to the new Finnish limit values, J. Mater. Cycles Waste Manage. 10 87–92.
  • 18. Ferreira C, Ribeiro A, Ottosen L (2003) Possible applications for municipal solid waste fly ash, J. Hazard. Mater. B96 201–216.
  • 19. Gould JP, Cross WH, Pohland FG (1989) Factors influencing mobility of toxic metals in landfills operated with leachate recycle. In: Emerging technologies in hazardous waste management. ACS symposium series, 422.
  • 20. Hjelmar O, Holm J, Crillesen K. (2007) Utilization of MSWI bottom ash as sub-base in road construction: first results from a large-scale test site. J. Hazard. Mater. A1 39 471–480.
  • 21. Iyer R (2002) "e surface chemistry of leaching coal fly ash, J. Hazard. Mater. B 93 321–329.
  • 22. Jiang W, Roy DM (1992) Hydro-thermally processing of new fly ash cement, Ceram. Bull. (4) 642–647.
  • 23. Johnson CA, Kaeppeli M, Brandenberger S, Ulrich A, Baumann W (1999), Hydrological and geochemical factors affecting leachate composition in municipal solid waste incinerator bottom ash. Part II. the geochemistry of leachate from landfill Lostorf, Switzerland. J.Contam. Hydrol. 40 239–259.
  • 24. Jones KB, Ruppert LF, Swanson SM (2012) Leaching of elements from bottom ash, economizer fly ash, and fly ash from two coal-fired power plants. Int. J. Coal Geol. 94 337–348.
  • 25. Kim AG (2006) "e effect of alkalinity of Class F PC fly ash on metal release, Fuel, 85 1403–1410.
  • 26. Kosson DS, Van der Sloot HA (2000) WASCON Conference, Putting "eory into Practice, Waste Man. 20(2-3) 113.
  • 27. Koukouzas N, Ketikidis C, Itskos G (2011) Heavy metal characterization of CFB-derived coal fly ash, Fuel Process. Technol. 92 441–446.
  • 28. Koukouzas N, Vasilatos C, Itskos G, Mitsis I, Moutsatsou A (2010) Removal of heavy metals from wastewater using CFB-coal fly ash zeolitic materials, J. Hazard. Mater. 173 581–588.
  • 29. Lea F. (1980) Lea’s Chemistry of Cement and Concrete, John Wiley & Sons, London.
  • 30. Lee JK, Ko J, Kim YS. (2017) Rheology of Fly Ash Mixed Tailings Slurries and Applicability of Prediction Models, Minerals 7, 165.
  • 31. Lidelow S, Lagerkvist A (2007) Evaluation of leachate emissions from crushed rock and municipal solid waste incineration bottom ash used in road construction. Waste Manage. 27 1356–1365.
  • 32. Liu H, Banerji SK, Burkett WJ (2009) Engelenhoven, J.Van Environmental Properties of Fly Ash Bricks , World of Coal Ash (WOCA) Conference. Lexington, KY, USA.
  • 33. Prinya C, Ubolluk R (2018) Fire-resistant geopolymer bricks synthesized from high-calcium fly ash with outdoor heat exposure, Clean Technologies and Environmental Policy, Volume 20, Issue 5, pp 1097–1103.
  • 34. Quevauviller Ph, Sloot HA, Ure A, Muntau H, Gomez A, Rauret G (1996) Conclusions of the workshop: harmonization of leaching/extraction tests for environmental risk assessment, "e Sci. Total Environment 178 133-139.
  • 35. Rai A, Mandal AK, Singh KK, Mankhand TR (2013) Preparation and Characterization of Lime Activated Unfired Bricks Made with Industrial Wastes, International J. Waste Resources, Vol. 3(1):40-46.
  • 36. Shi C, Day RL (2000) Pozzolanic reaction in the presence of chemical activators part II. Reaction products and mechanism, Cem. Concr. Res. 30 607–613.
  • 37. Sloot HA (1996) Developments in evaluating environmental impact from utilization of bulk inert wastes using laboratory leaching tests and field verification, Waste Management 16 65-81.
  • 38. Sylvain T, Etoh M, Etame J, Sanjay K (2018) Characterization and Leachability Behaviour of Geopolymer Cement Synthesised from Municipal Solid Waste Incinerator Fly Ash and Volcanic Ash Blends, Recycling 3, 50.
  • 39. Sasmita C.B.,Paul, M.K., Short-term leaching study of heavy metals from LD slag of important steel industries in Eastern India, Journal of Material Cycles and Waste Management, April 2017, Volume 19, Issue 2, pp 851–862.
  • 40. Tanrıverdi M. (2006) Toxic elements leachability tests on autoclaved fly ash-lime bricks, Asian J. Chem. 18 3 2310-2314.
  • 41. Terzić A, Radojević Z, Miličić l, Pavlović l, Aćimović Z (2012) Leaching of the potentially toxic pollutants from composites based on waste raw material, Chemical industry & Chemical engineering quarterly 18 (3) 373−383.
  • 42. Ural S (2005) Comparison of fly ash properties from Afsin–Elbistan coal basin, Turkey, J. Hazard. Mater. B119 85–92.
  • 43. US Environmental Protection Agency (1992) Test Method 1311-TCLP, Toxicity Characteristic Leaching Procedure, Washington, DC., 35 pp.
  • 44. Valentim B, Guedes A, Flores D, Ward CR, Hower CR (2009) Variations in fly ashcomposition sampling location: case study from a Portuguese power plant, Coal Combustion and Gasification Products, 14–24.
  • 45. Valle-Zermeno R, Formosa J, Chimenos JM, Martinez M, Fernande, A (2013) Aggregate material formulated with MSWI bottom ash and APC fly ash for use as secondary building material. Waste Manag. 33(3) 621-627.
  • 46. Vitkova M, Ettle, V, Šebek O, Mihaljevič M, Grygar T, Rohovec J (2009) "e pH-dependent leaching of inorganic contaminants from secondary lead smelter fly ash. J Hazard Mater. 167 427-433.
  • 47. Wang H, Jian J, Wang Y, Du W. (2018) Feasibility of Using Gangue and Fly Ash as Filling Slurry Materials, Processes 6, 232.
  • 48. http://www.enerji.gov.tr/en-US/Pages/Coal. (10.09.2018).
  • 49. https://euracoal.eu/info/country-profiles/turkey (14.09.2018).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ef7626e2-1cfa-4ca6-812e-2b28f201b203
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.