Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This article describes adopted, within the scope of one of e-leaming system creation, a method of diagnosis generation based on defined symptoms with the use of the Bayes naive algorithm. It is intended for Medical Faculties students, inference module shall facilitate determination of probability of the influence of individual symptoms on diagnosis. Practical application of such approach presented in the article gives the possibility of distant verification of student's knowledge taking into account not only diagnosis, but also will facilitate gaining skills of appearance materiality determination of symptoms in relation to diagnosed affection. For the testing purposes of adopted assumptions the hundred element database has been applied depending on spine affection in discopathy form and factors, which can affect the origin of the affection - obesity and hard physical work. The operation of the Bayes algorithm has been presented within the scope of influence evaluation of enumerated factors on affection origin.
Czasopismo
Rocznik
Tom
Strony
31--34
Opis fizyczny
Bibliogr. 7 poz., tab.
Twórcy
autor
- University of Silesia Faculty of Computer and Materials Science Institute of Computer Science
autor
- University of Silesia Faculty of Computer and Materials Science Institute of Computer Science
autor
- University of Silesia Faculty of Computer and Materials Science Institute of Computer Science
Bibliografia
- 1. Kłopotek M. A.: Inteligentne Wyszukiwarki Internetowe, Akademicka Oficyna Wydawnicza EXIT, Warszawa 2001.
- 2. Ross K. A., Wright C. R. B., Matematyka Dyskretna, Wydawnictwo Naukowe PWN, Warszawa 2006.
- 3. Bøttcher S. G. Dethlefsen C: Learning Bayesian Networks with R, Proceedings of the 3rd International Workshop on Distributed Statistical Computing, March 20-22, Vienna, Austria, 2003.
- 7. Larose D. T: Data Mining Methods and Models, John Wiley & Sons, Hoboken 2006.
- 8. Moczko J. A.: Wybrane metody analizy danych jakościowych na przykładzie wyników badań kardiologicznych, StatSoft Polska, Kraków 2008.
- 9. Hand D., Mannila H., Smyth P.: Principles of Data Mining, Massachusets Institute of Technology, Cambridge 2001.
- 10. Friedman N., Linial M., Nachman I., Peer D.: Using Bayesian Networks to Analyze Expression Data, Hebrew University, J. Computational Biology, Vol. 7, No. 3-4, pp. 601-620, 2000. Kwiatkowska A. M.: Systemy wspomagania decyzji, Wydawnictwo Naukowe PWN, Warszawa 2007.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ef756bb2-842f-4e45-8362-c62f16224614