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Generalized control with compact support for systems
with distributed parameters

ASATUR ZH. KHURSHUDYAN

We propose a generalization of the Butkovskiy’s method of control with compact support
[1] allowing to derive exact controllability conditions and construct explicit solutions in control
problems for systems with distributed parameters. The idea is the introduction of a new state
function which is supported in considered bounded time interval and coincides with the original
one therein. By means of techniques of the distributions theory the problem is reduced to an
interpolation problem for Fourier image of unknown function or to corresponding system of
integral equalities. Treating it as infinite dimensional problem of moments, its L1, L2 and L∞-
optimal solutions are constructed explicitly. The technique is explained for semilinear wave
equation with distributed and boundary controls. Particular cases are discussed.

Key words: distributed system, controls with compact support, problem of moments, L1,
L2 and L∞-optimal controls, distributions.

1. Introduction

The answer to one of the most important problem of the control theory, controllabi-
lity, i.e. ability to ‘bring’ the system from a given initial state into a given terminal state,
often is not enough for construction of a particular control system in practice: sometimes
explicit representation or at least characterization of the controls is required. Among ex-
isting techniques only a few may give answer to the question about the controllability
and, at the same time, provide a method for constructing the required controls. One of
those few methods is the method of A. G. Butkovskiy of control with compact sup-
port [1]. Assuming, that the control and the state functions are concentrated on some
finite time-interval [2] where the control process is carried out, the Butkovskiy’s method
provide an efficient procedure for obtaining the system of necessary and sufficient con-
ditions for the system exact controllability. On this way the well-known Wiener–Paley
theorem [1] is used. Namely, those conditions become the system of restrictions where
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6 AS.ZH. KHURSHUDYAN

the control function must be determined from. In [1] two approaches are suggested for
constructing the unknown controls. According to the first one the system of restrictions
is reduced to interpolation problem with respect to the Fourier image of the unknown
function. Interpolating it and applying Fourier inverse transform, one is able to find ap-
proximate expression of required controls. The second approach suggests to separate the
real and the imaginary parts of the system of restrictions. This will lead us to an infinite
dimensional problem of moments. Actually, by means of the Butkovskiy’s method we
obtain a whole class of admissible for exact controllability functions, therefore optimal-
ity conditions may be proposed.

Using the Fourier method of variables separation is also an accepted approach for
solving control problems for systems with distributed parameters [1].

In this paper we propose a generalization of the Butkovskiy’s method for investigat-
ing distributed systems which have not classical solutions and we have to deal with its
distributional or weak solutions [2]. Unlike [1] instead of assuming the compactness of
the state and the control functions support, we introduce a generalized (distributional)
state function which is concentrated on the time-interval where the control process is
carried out and write the governing system in terms of distributions. As a result, we
may freely operate with it, apply the distributional Fourier transform which is justi-
fied for both regular and singular distributions [2, 3, 4]. Thereafter, applying the same
procedure as above we arrive at a similar infinite dimensional system of necessary and
sufficient conditions for the system exact controllability. For this purpose the Wiener–
Paley–Schwartz theorem [1, 2, 3, 4] should be used. The two approaches of the controls
determination hold in this case as well.

Actually, this idea is borrowed from Professor E. Kh. Grigoryan, who applied the
mentioned strategy to solve the well–known problem of ‘cork’ [5], where the contact in-
teraction between an elastic semi–plane and a finite inclusion terminating to the bound-
ary of the semi–plane is investigated. To determine the tangential stresses in the contact
area the author thought up a clever trick. Using the techniques of the theory of distribu-
tions, he replaced the finite inclusion by a semi–infinite piecewise–homogeneous one,
the finite part of which has the same characteristics as the initial inclusion does, and
the rest– as the semi–plane does. As a result he was able to obtain the unknown contact
stresses explicitly.

The techniques is used previously in [6-11] to obtain explicit solutions in different
control problems. Note, that a quite similar approach was used in [12].

To demonstrate the procedure we shortly consider boundary and distributed exact
controllability of semilinear wave equations in a rectangle and a semi-infinite strip [6-
20]. The case when the distributed and the boundary controls contains constant delay are
also discussed.

The paper is organized as follows. The main concepts and notations used throughout
the paper are brought in the first section. The statement of boundary and distributed
exact controllability problem for general distributed system is discussed in the second
section. The Butkovskiy’s generalized method is outlined thereafter and two possibilities
for solving the problem is proposed. Derivation of L1, L2 and L∞-optimal solutions of
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the general problem explicitly is described in the Section 5. The main results obtained
by proposed method in several particular problems are considered in the Section 6. An
overall conclusion completes the presentation of the article.

2. Notations and abbreviations

O denotes the ordinary closure, ∂O– the boundary and SO a closed subset of finite
or infinite domain O. The set supp η(x) = {x ∈ R; η(x) = 0} denotes the support of a
function η : R → R. D[·] denotes an operator and Dγ– weak derivative. By W q,p we
denote the Sobolev space W p,q (O) = {η ∈ Lp (O) ; Dqη ∈ Lp (O)}. We will use the no-
tion {1;n} instead of {1,2, ...,n} for short. Ft [·] denotes the operator of the distributional
Fourier transform with respect to t [3]:

Ft [η] =
∫
R

η(t)exp [iσt]dt ≡ η(σ),

σ ∈R is the spectral parameter of the transform. The inverse distributional Fourier trans-
form is denoted by F −1

t [·] [3]:

F −1
t [η] =

1
2π

∫
R

η(σ)exp [−iσt]dσ.

Cn
m are the binomial coefficients.

θ(t)=

{
1, t > 0,
0, t < 0,

sign t =

{
1, t > 0,
−1, t < 0,

δ(t)=

{
0, t ̸= 0,
∞, t = 0,

χO(t)=

{
1, t ∈ O,

0, t /∈ O,

are the Heaviside’s unit step, the sign function, the Dirac’s delta and the characteristic
functions.

3. The general problem

Suppose we have to solve a control problem with a fix end-point for an abstract
differential equation

D[w] = f (x, t), (x, t) ∈ O ×R+, (1)

subjected to boundary conditions

B[w] = ub(t), (x, t) ∈ ∂O ×R+. (2)

Here w : O ×R+ → R is the state function, f : SO ×R+ → R is the right hand side.
D : W p,q → L1

loc is the state operator, B : W p,q → L2 is the operator of the boundary con-
ditions: they both are supposed to have stationary or coordinate dependent coefficients.
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8 AS.ZH. KHURSHUDYAN

The initial state of the system is supposed to be known:

D ιw(x, t)
∣∣
t=0 = wι

0(x), ι ∈ {1;n−1}, x ∈ O, (3)

n is the order of the highest time-derivative of the state function in (1).
The aim of the control problem is the ensuring of terminal condition

D ιw(x, t)
∣∣
t=T = wι

T (x), ι ∈ {1;n−1}, x ∈ O, (4)

by means of an appropriate choice of control function. Functions (3) and (4) are chosen
from appropriate Sobolev spaces (see [13] for details).

The control may be implemented either by means of the boundary function ub or
the right hand side f . In the first case the problem will be the explicit description of
admissible boundary controls ub ∈ L2[0,T ]. In the second case, supposing that f (x, t) =
v(x)ud(t), where 0 < v ∈ L1

loc (SO) describes the distribution of controls, we will seek
admissible controls ud ∈ L1[0,T ].

Surely, those admissible controls are non-unique [1] and, therefore, question of find-
ing an optimal control minimizing a particular cost functional is raised. Our attention
will be paid to three particular functionals:

κ1[u] = ||u||L1[0,T ] ≡
T∫

0

|u(t)|dt, (5a)

κ2[u] = ||u||2L2[0,T ] ≡
T∫

0

u2(t)dt, (5b)

or
κ∞[u] = ||u||L∞[0,T ] ≡ max

t∈[0,T ]
|u(t)|. (5c)

The corresponding controls we shall call L1, L2 and L∞-optimal controls.

4. Solution of the problem

The solution technique proposed in this paper is mainly based on the Butkovskiy’s
method of control with compact support and uses the idea of [5]. We introduce operator
A[0,T ][·] which puts any ordinary function η : [0,T ] → R into the correspondence with
compactly supported function η1 : R→ R concentrated on [0,T ]:

η1(t)≡ A[0,T ][η] =

{
η(t), t ∈ [0,T ],
0, t /∈ [0,T ].
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The explicit form of A[0,T ][·] may be expressed in several manners, for instance by
the characteristic function of [0,T ]:

A[0,T ][η] = χ[0,T ](t)η(t), t ∈ R.

According to [5] we may represent it by the Heaviside unit step function

A[0,T ][η] = [θ(t)−θ(t −T )]η(t), t ∈ R.

In the sense of distributions [4, 2] we may differentiate η1 arbitrary times.
To solve the control problem described in the last section we suggest to apply A[0,T ][·]

to governing system (1), (2). First of all, we will be able to write it in the sense of dis-
tributions justifying all operators on the way of determining admissible controls. Taking
into account the Leibniz rule of differentiation, we have

Dnη1(t) =
n

∑
ι=1

Cn
ι Dn−ι [θ(t)−θ(t −T )]D ιη(t), t ∈ R.

From the other hand side, in the sense of distributions Dθ(t) = δ(t), therefore

Dnη1(t) = [θ(t)−θ(t −T )]Dnη(t)+
n−1

∑
ι=1

Cn
ι Dn−ι−1 [δ(t)−δ(t −T )]D ιη(t), t ∈ R.

Using the filtering property of the Dirac’s delta [4, 2, 3], the second term at the right
hand side is well-defined by means of initial and terminal data (3), (4). For instance,
when n = 1

∂w1

∂t
= [θ(t)−θ(t −T )]

∂w
∂t

+w1
0(x)δ(t)+w1

T (x)δ(t −T ), t ∈ R,

and when n = 2–

∂2w1

∂t2 =

[θ(t)−θ(t −T )]
∂2w
∂t2 +w1

0(x)δ
′(t)−w1

T (x)δ
′(t−T )+w2

0(x)δ(t)−w2
T (x)δ(t−T ), t ∈R.

Thus, from (1), (2) we will have

D[w1] = f1(x, t)−W (x, t), (x, t) ∈ O ×R, (6)

B[w1] = u1b(t), (x, t) ∈ ∂O ×R, (7)

where W (x, t) contains the initial and the terminal data of the system derived in the men-
tioned manner. w1(x, t) = A[0,T ][w] will be called generalized state function. Obviously,
the generalized state function is concentrated on [0,T ] where the control process is car-
ried out and it coincides with the ordinary state function w therein.
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Now, we may apply the distributional Fourier transform to (6) and (7). As a result
we will obtain a Cauchy problem with respect to Fourier image of the generalized state
function:

D[w1] = f 1(x,σ)−W (x,σ), (x,σ) ∈ O ×R, (8)

B[w1] = u1b(σ), (x,σ) ∈ ∂O ×R, (9)

and we will be able to proceed as is suggested in [1] and is done in [7-11].
According to Wiener–Paley–Schwartz theorem [1-4] w1(x,σ+ iς), ς ∈ R, i.e. the

continuation of the distributional Fourier transform of the generalized state function in
the whole complex plane, is an entire function. Suppose, we have derived the depen-
dence w1 = w1(x,σ,u(σ)), where u1 denotes any of functions u1d or u1b. Extending that
dependence to the whole complex plane and providing that w1 must not have any singu-
larities there, we have to equate the numerator of all fractions existing in it to zero in the
complex roots of its denominator. It will provide us a system of restrictions as follows:

u1(σk + iςk) = Mk, k ∈K, (10)

where the constants Mk depend on parameters of the system (8), (9). It tuns out, that
[1, 10, 7, 8, 9, 11] usually K= N. After separating the real and the imaginary parts, this
system will be equivalent to∫
R

u1(t)cos(σkt)exp [−ςkt]dt = M1k,
∫
R

u1(t)sin(σkt)exp [−ςkt]dt = M2k, k ∈K.

(11)
Actually, both integrals are taken in [0,T ] where the unknown function is concentrated
on.

Thus, as long as the conditions (10) or equivalently (11) are satisfied by a control
function u1 (boundary or distributed) the system (1)–(4) is exact controllable, which
means that the set of admissible controls consists of measurable functions satisfying (10)
or (11). Using the system (10) or (11) to construct the set of admissible for the problem
(1)–(4) has its privileges. (10), for instance, may be used as interpolation conditions in
nodes σk + iςk to interpolate the function u1. The real part of the function F −1

t [u1] will
form the set of admissible controls. Being a system of linear Fredholm integral equations
of the first kind and therefore solved by efficient numerical methods [21], (11) may be
treated as a problem of moments [1,7-11]. In [1] the general form of admissible Lp,
1¬ p¬ ∞, controls is derived for linear problem of moments, as well as necessary and
sufficient conditions of their existence are obtained.

Among others, one of the privileges of this approach is that with explicit representa-
tion of admissible controls we simultaneously derive also existence conditions for them.
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5. L1, L2 and L∞-optimal solutions of (11)

In this section we bring L1, L2 and L∞-optimal solutions of system (11) when K is
a set of finite power, since it is proved in [1], that the case K = N is resolvable if its all
truncated finite parts are resolvable. The questions concerning convergence of solution of
the truncated part to the solution of the infinite system are studied in traditional manners
(see [1] and the references therein).

As sets of admissible controls we take:

U1 = {u ∈ L1[0,T ]; supp u ⊆ [0,T ]},

U2 = {u ∈ L2[0,T ]; supp u ⊆ [0,T ]},

U∞ = {u ∈ L∞[0,T ]; supp u ⊆ [0,T ], |u|¬ u0}.

The weak derivative of L1–optimal solution of (11) has the form [7, 8, 9]

Duo(t) =
m

∑
j=1

uo
jδ(t − to

j ), t ∈ [0,T ].

The generalized primitive uo(t) may be represented in several manners. For example,

uo(t) =
m

∑
j=1

uo
jθ(t − to

j ), t ∈ [0,T ], or (12a)

uo(t) =
1
2

m

∑
j=1

uo
jsign(t − to

j ), t ∈ [0,T ]. (12b)

The intensities uo
j are constrained by

sign uo
j = sign ho (to

j
)
, j ∈ {1;m},

and are determined from system

m

∑
j=1

uo
j exp

[
−ςkto

j
]

cos
(
σkto

j
)
= M1k,

m

∑
j=1

uo
j exp

[
−ςkto

j
]

sin
(
σkto

j
)
= M2k, k ∈K,

obtained by substituting (12a) or (12b) in (11). The moments to
j are determined from

equality

κ∞[ho] =

[
m

∑
j=1

∣∣uo
j

∣∣]−1

.

The number m of control impacts must be determined from inclusion condition
{to

j }m
j=1 ⊂ (0,T ). Unfortunately, it is non–unique [1, 7, 8, 9].
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12 AS.ZH. KHURSHUDYAN

Here

ho(t) =
n

∑
k=1

exp [−ςkt] [lo
1k cos(σkt)+ lo

2k sin(σkt)] , t ∈ [0,T ],

and the optimal coefficients lo
1k, l

o
2k are determined from the following problem of condi-

tional extrema:

ho (to
j
)
−−−→
l1k,l2k

min, when
n

∑
k=1

[l1kM1k + l2kM2k] = 1.

At this, the solution uo(t) of truncated system (11) exists if and only if κ∞[ho] ̸= 0. Then,
for solvability of infinite system, according to [1] we have

Theorem 1 L1–optimal solution uo(t) (12a) or equivalent (12b) of the infinite system
(11) exists if and only if

m

∑
j=1

∣∣uo
j

∣∣ ̸= 0

for all n ∈ N.

In other words, at least one of the intensities uo
j must differ from zero for any natural

n. The proof may be found in [1].
In the case of L2–optimal solution of finite system (11) we have [8]

uo(t) =
1

κ2
2 [ho]

n

∑
k=1

exp[−ςkt] [lo
1k cos(σkt)+ lo

2k sin(σkt)] , t ∈ [0,T ], (13)

where the coefficients lo
pk, p ∈ {1;2}, are determined from system of linear algebraic

equations
JLo = M, (14)

where Lo = (lo
11 . . . l

o
1n lo

21 . . . l
o
2n)

T, M = (M11 . . .M1n M21 . . .M2n)
T, the upper index T

denotes transposition,
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J =



J+11 J+12 . . . J+1n J11 J12 . . . J1n

J+21 J+22 . . . J+2n J21 J22 . . . J2n
...

...
...

...
...

...
...

...
J+n1 J+n1 . . . J+nn Jn1 Jn2 . . . Jnn

J11 J21 . . . J1n J−11 J−12 . . . J−1n

J12 J22 . . . J2n J−21 J−22 . . . J−2n
...

...
...

...
...

...
...

...
J1n J2n . . . Jnn J−n1 J−n2 . . . J−nn


,

J±jk =
T∫

0

(
cos(σ jt)cos(σkt)
sin(σ jt)sin(σkt)

)
exp [−(ς j + ςk) t]dt,

J jk =

T∫
0

cos(σ jt)sin(σkt)exp [−(ς j + ςk) t]dt.

(15)

Necessary and sufficient conditions for exact controllability in this case gives the
following

Theorem 2 L2–optimal solution uo(t) (13) of infinite system (11) exists if and only if

κ2
2 =

n

∑
k=1

(lo
1k)

2 J+kk +2
n−1

∑
j=1

n

∑
k= j+1

lo
1 j

(
lo
1kJ+jk + lo

2kJ jk

)
+

+
n

∑
k=1

(lo
2k)

2 J−kk +2
n−1

∑
j=1

n

∑
k= j+1

lo
2 j

(
lo
2kJ jk + lo

2kJ−jk
) (16)

is positive for all n ∈ N.

Here the selfadjointness of L2[0,T ] is taken into account.
If all the roots zk, k ∈ N, are real, i.e. ςk = 0, k ∈ N, instead of formulas (13)–(16)

the following should be used: optimal control (13) reads as

uo(t) =
1

κ2
2 [ho]

n

∑
k=1

[lo
1k cos(σkt)+ lo

2k sin(σkt)] , t ∈ [0,T ],

system (14) is separated into two independent systems with respect to coefficients
lo
pk, p ∈ {1;2}, correspondingly:

J±Lo
p = Mp, p ∈ {1;2},
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14 AS.ZH. KHURSHUDYAN

Lo
p = (lo

p1 . . . l
o
pn)

T , Mp = (Mp1 . . .Mpn)
T , J± = {J±jk}

n
j,k=1,

J±jk =
T∫

0

(
cos(σ jt)cos(σkt)
sin(σ jt)sin(σkt)

)
dt,

and

κ2
2 =

n

∑
k=1

(lo
1k)

2 J+kk +2
n−1

∑
j=1

lo
1 j

n

∑
k= j+1

lo
1kJ+jk

n

∑
k=1

(lo
2k)

2 J−kk +2
n−1

∑
j=1

lo
2 j

n

∑
k= j+1

lo
2kJ−jk.

L∞-optimal solution of (11) is

uo(t) = u0 · sign ho(t), t ∈ [0,T ]. (17)

The solvability of (11) in this case is provided by the following theorem.

Theorem 3 L∞–optimal solution uo(t) (17) of infinite system (11) exists if and only if

κ1[ho] =
1
u0
¬

n

∑
k=1

√(
lo
1k

)2
+
(
lo
2k

)2 1− exp [−ςkT ]
ςk

,

for all n ∈ N.

The case when all zk, k ∈ N, are real (ςk → 0) is obtained using l‘Hospital‘s rule. The
theorems 1, 2 and 3, essentially, provide the constraints on initial, terminal data, bound-
ary functions, right-hand side and other parameters of the state equation and control time
T in purposes of exact controllability of the system.

6. Particular Problems

Now we will demonstrate the proposed technique to derive a required system of
controllability conditions.

Suppose, that in the rectangle [0,1]× [0,T ]

D[w] =
∂
∂x

[
N(x)

∂w(x, t)
∂x

]
−ρ(x)

∂2w(x, t)
∂t2 , (18)

α0w(0, t)+β0
∂w(x, t)

∂x

∣∣∣∣
x=0

= u0
b(t), α1w(1, t)+β1

∂w(x, t)
∂x

∣∣∣∣
x=1

= u1
b(t), t ∈ [0,T ],

w(x,0)=w0(x),
∂w(x, t)

∂t

∣∣∣∣
t=0

=w1
0(x), w(x,T )=wT (x),

∂w(x, t)
∂t

∣∣∣∣
t=T

=w1
T (x), x∈ [0,1].
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This system describes the forced vibrations of an elastic non–homogeneous semi–
infinite string with density ρ(x) and tensile force N(x). It describes other real–life phe-
nomena as well. In purposes of well-posedness of weak solution in W 1,2 ([0,1]× [0,T ])
[2] we suppose that 0 < N ∈ C1[0,1] and 0 < ρ ∈ C[0,1], u0

b, u1
b ∈ L2[0,T ], w0 ∈

W 1,2[0,1], w1
0 ∈ W 1,1[0,1]. Moreover, the physical considerations lead to additional re-

striction N(x)∼ ρ−1(x), even in limiting cases ρ(x)→ 0+ and ρ(x)→+∞.
Then

W (x, t) = ρ(x)
[
w0(x)δ′(t)+w1

0(x)δ(t)−wT (x)δ′(t −T )−w1
T (x)δ(t −T )

]
.

The general solution of the corresponding boundary value problem (8), (9) in this case
reads as

w(x,σ)=h1(σ)exp [iλ(x,σ)]+h2(σ)exp [−iλ(x,σ)]+Λ(x,σ), (x,σ)∈[0,1]×[0,T ], (19)

where

Λ(x,σ) =
x∫

0

K (x,ξ,σ)
[

f 1(ξ,σ)−W (ξ,σ)
]

dξ, K (x,ξ,σ) =
sin [λ(x,σ)−λ(ξ,σ)]

λ′(ξ,σ)
,

hp(σ) =
∆p(σ)
∆(σ)

, p ∈ {1;2},

∆(σ) =

∣∣∣∣∣[α0 + iβ0λ′(0,σ)]exp [iλ(0,σ)] [α0 − iβ0λ′(0,σ)]exp [−iλ(0,σ)]
[α1 + iβ1λ′(1,σ)]exp [iλ(1,σ)] [α1 − iβ1λ′(1,σ)]exp [−iλ(1,σ)]

∣∣∣∣∣ ,
∆1(σ) =

∣∣∣∣∣u0
b1(σ) [α0 − iβ0λ′(0,σ)]exp [−iλ(0,σ)]

u11
b1(σ) [α1 − iβ1λ′(1,σ)]exp [−iλ(1,σ)]

∣∣∣∣∣ ,
∆2(σ) =

∣∣∣∣∣[α0 + iβ0λ′(0,σ)]exp [iλ(0,σ)] u0
b1(σ)

[α1 + iβ1λ′(1,σ)]exp [iλ(1,σ)] u11
b1(σ)

∣∣∣∣∣ ,
and

u11
b1(σ) = u1

b1(σ)−α1Λ(1,σ)−β1Λ′(1,σ).

Above λ = λ(x,σ) is determined from Riccati differential equation

N(x)
∂ν
∂x

+ν2 +σ2γ2 = 0, γ2 = N(x)ρ(x), (x,σ) ∈ [0,1]×R, (20)

by the relation

iλ(x,σ) =
x∫

0

ν(ξ,σ)
N(ξ)

dξ. (21)
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16 AS.ZH. KHURSHUDYAN

In [23] exact solution of Riccati equation (20) for various N(x) are given.
According to proposed technique we have to expand (19) in the whole C and ensure

it to be entire there. It is easy to prove, that for locally measurable f , Λ(x,σ+ iς) is
entire, therefore w(x,σ+ iς), p ∈ {1;2}, is entire if and only if hp(σ+ iς) are simulta-
neously entire. Expanding the main and the auxiliary determinants brought above in the
whole C and equating to zero the numerators of those fractions in complex roots of the
denominators, we will obtain the necessary system of restrictions like (10) or (11) for
unknown controls.

Particularly, if we seek a boundary control u0
b1 ∈ U2 the corresponding constants Mk

will have the form

Mk = u11
b1(zk)

α0 − iβ0λ′(0,zk)

α1 − iβ1λ′(1,zk)
exp [i(λ(1,zk)−λ(0,zk))] .

Seeking a boundary control u1
b1 ∈ U2, we will arrive at

Mk = u0
b1(zk)

α1 − iβ1λ′(1,zk)

α0 − iβ0λ′(0,zk)
exp [−i(λ(1,zk)−λ(0,zk))]+

+α1Λ(1,zk)+β1Λ′(1,zk).

Finally, seeking a distributed control ud1 ∈ U1, we will obtain

Mk =

[
u1

b1(zk)+α1R [g]
∣∣
x=1 +β1

∂R [g]
∂x

∣∣∣∣
x=1

−

−u0
b1(zk)

α1 − iβ1λ′(1,zk)

α0 − iβ0λ′(0,zk)
exp [−i(λ(1,zk)−λ(0,zk))]

][
α1R [v]

∣∣
x=1 +β1

∂R [v]
∂x

∣∣∣∣
x=1

]−1

,

R [η] =
x∫

0

K (x,ξ,zk)η(ξ)dξ.

The points zk are the roots of expansion of the main determinant ∆(σ) in the whole
complex plane.

If one needs the controlled motion of the string, he has to apply Fourier inverse
distributional transform to (19):

w(x, t) = F −1
t [w] =

=
1

2π

∞∫
−∞

[h1(σ)exp [iλ(x,σ)]+h2(σ)exp [−iλ(x,σ)]+Λ(x,σ)]exp [−iσt]dσ,

(x, t) ∈ [0,1]× [0,T ].

It is easy to check that

Re w(x,−σ) = Re w(x,σ), Im w(x,−σ) =−Im w(x,σ),
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therefore its Fourier inverse transform is a real valued function.

w(x, t) =
1

2π

∞∫
0

[Re w(x,σ)cos(σt)+ Im w(x,σ)sin(σt)]dσ,

(x, t) ∈ [0,1]× [0,T ].

As the extension of the integrand in the whole complex plane has no singularities, the
integral is well defined.

For example, when N(x) = eax, γ2 = 1, equation (20) has exact solution in terms of
Bessel’s functions [23]. Then

∆(σ) =
sin2α [|σ|exp[−a]]− sin2α |σ|

sinα [|σ|exp[−a]]sinα |σ|
, α =

1
a3 , ∆1(σ) = Λ(1,σ).

Repeating the procedure described above we will obtain

σk =
2πk

1+ exp[−a]
, k ∈ N,

i.e. all the roots of equation ∆(z) = 0 are real (ςk = 0), which leads to trigonometric
problem of moments. In limiting case, when a → 0, we have σk = πk, k ∈ N, which
matches with results of [1].

One of the privileges of the technique is that it allows to find controllability condi-
tions also in problems on non-compact domains. Suppose, that the equation (18) holds
in strip R+× [0,T ], at this the behavior of the string at infinity is given: w(x →+∞, t) =
w∞(t). A Dirichlet boundary control u ∈ U1 is required to be found ensuring given ter-
minal data. Then

Mk = M1k + iM2k = w∞(zk)+(−1)kΛ(0,zk),

where zk are the complex roots of equation λ(0,zk) = πk: λ(x,σ) is still defined by (21).
For the non-homogeneity considered above

iλ(x,σ) = α ln |cos [|σ|exp[−ax]]| , (x,σ) ∈ R+×R,

and therefore
zk = σk =

πk
α
, k ∈ N.

The Butkovskiy’s generalized method provides a powerful tool to deal with control
problems with constant delays. Suppose, that the control is carried out by distributed or
boundary controls with constant delay τ. We will deal with (18) when f (x, t) ≡ 0 and
Dirichlet boundary conditions are given

w(0, t)≡ 0, w(1, t) = ub(t − τ), t ∈ [0,T ],
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18 AS.ZH. KHURSHUDYAN

and when
f (x, t) = ud(t − τ)v(x),

and mixed boundary conditions are given:

w(0, t) = 0,
∂w(x, t)

∂x

∣∣∣∣
x=1

= wb1(t), t ∈ [0,T ].

Then, repeating the procedure described above we will respectively obtain

∆(σ) =−2isin[λ(1,σ)−λ(0,σ)], ∆1(σ) = [Λ(1,σ)− exp [iστ]ub1(σ)]exp [−iλ(0,σ)] ,

in the first case, and

∆(σ) =−2λ′(1,σ)cos[λ(1,σ)−λ(0,σ)], ∆1(σ) = [Λ′(1,σ)−ub1(σ)]exp [−iλ(0,σ)] ,

in the second case. Correspondingly

Mk = Λ(1,zk)exp[−izkτ], k ∈ N,

as long as
λ(1,zk)−λ(0,zk) = πk, k ∈ N,

and

Mk =

[
wb1(zk)+

∂R
[
W
]

∂x

∣∣∣∣
x=1

]
exp [−izkτ]

∂R [v]
∂x

∣∣∣∣
x=1

, k ∈ N,

as long as

λ(1,zk)−λ(0,zk) =
2k+1

2
π, k ∈ N.

Conclusion

We propose a generalization of Butkovskiy’s method of control with compact sup-
port for systems which have not classical solutions or which state function is not com-
pactly supported in considered time interval. The main idea is the introduction of a new
compactly supported state function which coincides with the original state function in
the considered time interval. This leads to transformation of governing system and inclu-
sion of given initial and required terminal data into it. The Fourier distributional trans-
form and the Wiener–Paley–Schwartz theorem give a unified approach for obtaining the
system exact controllability necessary and sufficient conditions. The solution providing
the exact controllability may be constructed either by solving an interpolation problem
for the Fourier image of the unknown and applying the Fourier inverse transform or by
solving an infinite dimensional linear problem of moments. It turns out, that the solution
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is far non-unique, hence optimality conditions are posed. The L1, L2 and L∞-optimal
solutions of the problem of moments are constructed.

The method is demonstrated for solving boundary and distributed control problems
for one-dimensional semi-linear wave equation in finite and semi-infinite domains. The
case when the controls contain constant delay is also considered. In all cases the resol-
ving system of necessary and sufficient conditions are obtained. The procedure requires
solution of a special Riccati equation, which is possible in numerous special cases.

The method may be extended for systems with special types of nonlinearities.
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