PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Health risk assessment in the vicinity of a copper smelter: particulate matter collected on a spider web

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We used spider webs as a particulate matter (PM) sampler to assess the possible health risk to the inhabitants of Legnica city (Poland). We aimed to find out if it is a useful material and could provide reliable information. We selected two spider families (Agelenidae and Linyphiidae) whose webs structure enhances the PM accumulation. The collected particles were analysed using a Scanning Electron Microscope equipped with Energy Dispersive X-Ray (SEM-EDX) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) which provided morphological and chemical information and allowed to indicate possible sources of pollution. The results showed that PM10, the fraction of particles smaller than 10 µm, was dominated by the particles of natural origin, while fine fractions were composed of diverse anthropogenic particles, whose origin can be connected with the activity of the copper smelter and in smaller quantity with the road traffic. The carcinogenic and non-carcinogenic health risk was assessed for these pathways: inhalation, ingestion, and dermal, for children and adults. The non-carcinogenic risk was very high (Hazard Index: HI > 1) both for children (Cu, Ni, Pb, Cd) and adults (Cu, As, Pb, Cd). Moreover, high carcinogenic risk (>10-4) was found in most of the sampling points. The study shows that spider webs are useful in biomonitoring of PM and can also be used for health risk assessment. In the studied region, it was found that the possible negative impact of air pollution on human health exists.
Czasopismo
Rocznik
Strony
36--50
Opis fizyczny
Bibliogr. 60 poz., rys., tab., wykr.
Twórcy
  • Faculty of Environmental Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Faculty of Environmental Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Faculty of Earth Science and Environmental Management, University of Wrocław, Cybulskiego 32, 50-205 Wrocław, Poland
  • Faculty of Earth Science and Environmental Management, University of Wrocław, Cybulskiego 32, 50-205 Wrocław, Poland
Bibliografia
  • Al-Shidi, H.K., Al-Reasi, H.A., & Sulaiman, H. (2022). Heavy metals levels in road dust from Muscat, Oman: relationship with traffic volumes, and ecological and health risk assessments. International Journal of Environmental Health Research, 32, 264–276. DOI:10.1080/09603123.2020.1751806
  • Bartz, W., Górka, M., Rybak, J., Rutkowski, R., & Stojanowska, A. (2021). The assessment of effectiveness of SEM- EDX and ICP-MS methods in the process of determining the mineralogical and geochemical composition of particulate matter deposited on spider webs. Chemosphere, 278, 130454. DOI: 10.1016/j.chemosphere.2021.130454
  • Bartz, W., Rogóż, J., Rogal, R., Cupa, A., & Szroeder, P. (2012). Characterization of historical lime plasters by combined non-destructive and destructive tests: The case of the sgraffito in Bożnów (SW Poland). Construction and Building Materials, 30, 439–446. DOI: 10.1016/j.conbuildmat.2011.12.045
  • Behrooz, R. D., Kaskaoutis, D. G., Grivas, G., & Mihalopoulos, N. (2021). Human health risk assessment for toxic elements in the extreme ambient dust conditions observed in Sistan, Iran. Chemosphere, 262, 127835. DOI:10.1016/j.chemosphere.2020.127835
  • Boev, I., Shijakova-Ivanova, T., & Mirakovski, D. (2013). Scanning electron microprobe characterization of air filters from the Kavadartsi town and Tikvesh valley. Geologica Macedonia, 27, 13–24.
  • Ciężka, M. M., Górka, M., Modelska, M., Tyszka, R., Samecka-Cymerman, A., Lewińska, A., Łubek, A., & Widory, D. (2018). The coupled study of metal concentrations and electron paramagnetic resonance (EPR) of lichens (Hypogymnia physodes) from the Świętokrzyski National Park—environmental implications. Environmental Science and Pollution Research, 25(4), 25348–25362. DOI: 10.1007/s11356-018-2586-x
  • Dancewicz, A., Otop, I., & Szalińska, W. (2009). Evaluation of environmental conditions in lower Silesia voivodeship in the aspect of their use for wind energy (in Polish). Wrocław, Poland: Instytut Meteorologii i Gospodarki Wodnej.
  • Deer, W. A., Howie, R. A., & Zussman, J. (2013). An Introduction to the Rock-Forming Minerals (3 ed.). London, England: Mineralogical Society of Great Britain and Ireland.
  • Ferreira-Baptista, L. & De Miguel, E. (2005). Geochemistry and risk assessment of street dust in Luanda, Angola: A tropical urban environment. Atmospheric Environment, 39(25), 4501-4512. DOI: 10.1016/j.atmosenv.2005.03.026 GDDKiA (2015, August), General Measurement Of Traffic. Retrieved August 15, 2022, from https://www.gddkia.gov.pl/userfiles/articles/g/generalny-pomiar-ruchu-w-2015_15598//SYNTEZA/WYNIKI_GPR2015_DW.pdf
  • GIOŚ. (2019). Annual assessment of air quality in Lower Silesia voivodeship- voivodship report for 2018. Wrocław, Poland: GIOŚ.
  • Górka, M., Bartz, W., & Rybak, J. (2018). The mineralogical interpretation of particulate matter deposited on Agelenidae and Pholcidae spider webs in the city of Wrocław (SW Poland): A preliminary case study. Journal of Aerosol Science, 123, 63-75. DOI: 10.1016/j.jaerosci.2018.06.008
  • Górka, M., Bartz, W., Skuridina, A., & Potysz, A. (2020). Populus nigra Italica Leaves as a Valuable Tool for Mineralogical and Geochemical Interpretation of Inorganic Atmospheric Aerosols’ Genesis. Atmosphere, 11(10), 1126. DOI: 10.3390/atmos11101126
  • Grigoratos, T., & Martini, G. (2014). Brake wear particle emissions: a review. Environmental Science and Pollution Research, 22(4), 2491–2504. DOI: 10.1007/s11356-014-3696-8
  • Grigoratos, T., & Martini, G. (2014). Non-exhaust traffic related emissions. Brake and tyre wear PM. European Union: European Commission, Joint Research Centre, Institute of Energy and Transport.
  • Hao, Y., Li, Q., Pan, Y., Liu, Z., Wu, S., Xu, Y., & Qian, G. (2017). Heavy metals distribution characteristics of FGD gypsum samples from Shanxi province 12 coal-fired power plants and its potential environmental impacts. Fuel, 209, 238–245. DOI: 10.1016/j.fuel.2017.07.094
  • Hong, N., Zhu, P., Liu, A., Zhao, X., & Guan, Y. (2018). Using an innovative flag element ratio approach to tracking potential sources of heavy metals on urban road surfaces. Environmental Pollution, 243, 410–417. DOI:10.1016/j.envpol.2018.08.098
  • Hose, G. C., James, J. M., & Gray, M. R. (2002). Spider webs as environmental indicators. Environmental Pollution,120(3), 725-733. DOI: 10.1016/S0269-7491(02)00171-9
  • Jain, S., Sharma, S. K., Choudhary, N., Masiwal, R., Saxena, M., Sharma, A., Mandal, T. K., Gupta, A., Gupta, N. C., & Sharma, C. (2017). Chemical characteristics and source apportionment of PM2.5 using PCA/APCS, UNMIX, and PMF at an urban site of Delhi, India. Environmental Science and Pollution Research, 24(17), 14637-14656. DOI: 10.1007/s11356-017-8925-5
  • Kelly, V. R., Lovett, G. M., Weathers, K. C., Findlay, S. E. G., Strayer, D. L., Burns, D. J., & Likens, G. E. (2008). LongTerm Sodium Chloride Retention in a Rural Watershed: Legacy Effects of Road Salt on Streamwater Concentration. Environmental Science & Technology, 42, 410–415. DOI: 10.1021/es071391lKGHM. (2022, August).Produkty.Retrieved August 27,2022,from https://kghm.com
  • Kosior, G., Samecka-Cymerman, A., Chmielewski, A., Wierzchnicki, R., Derda, M., & Kempers, A. J. (2008). Native and transplanted Pleurozium schreberi (Brid.)Mitt. As a bioindicator of N deposition in a heavily industrialized area of Upper Silesia (S Poland). Atmospheric Environment, 42(6), 1310-1318. DOI: 10.1016/j.atmosenv.2007.10.086
  • Kosior, G., Klánová, J., Vaňková, L., Kukučka, P., Chropeňová, M., Brudzińska-Kosior, A., Samecka-Cymerman, A., Kolon, K., & Kempers, A. J. (2015). Pleurozium schreberi as an ecological indicator of polybrominated diphenyl ethers (PBDEs) in a heavily industrialized urban area. Ecological Indicators, 48, 492-497. DOI: 10.1016/j.ecolind.2014.09.003
  • Kostecki, J., Greinert, A., Drab, M., Wasylewicz, R., & Walczak, B. (2015). Chemical Soil Degradation the Area of the Głogów Copper Smelter Protective Forest/ Degradacja Ziemi Na Terenach Byłej Strefy Ochronnej Huty Miedzi Głogów. Civil And Environmental Engineering Reports, 27(2), 61-71. DOI: 10.1515/ceer-2015-0022
  • Kuehl, P. J., Anderson, T. L., Candelaria, G., Gershman, B., Harlin, K., Hesterman, J. Y., Holmes, T., Hoppin, J., Lackas, C., Norenberg, J. P., Yu, H., & McDonald, J. D. (2012). Regional particle size dependent deposition of inhaled aerosols in rats and mice. Inhalation Toxicology, 24(1), 27–35. DOI: 10.3109/08958378.2011.632787
  • Lv, Y., Chen, X., Wei, S., Zhu, R., Wang, B., Chen, B., Kong, M., & Zhang, J. (2020). Sources, concentrations, and transport models of ultrafine particles near highways: a Literature Review. Building and Environment, 186, 107325. DOI: 10.1016/j.buildenv.2020.107325
  • Markert, B. (2007). Definitions and principles for bioindication and biomonitoring of trace metals in the environment. Journal of Trace Elements in Medicine and Biology, 21(1), 77-82. DOI: 10.1016/j.jtemb.2007.09.015
  • Marosz, A. (2016). Preliminary effect of long time used sodium chloride against winter slippery on roadside trees and soil along main national road no 12. Infrastructure and Ecology of Rural Areas, 1, 177–189. DOI: 10.14597/infraeco.2016.1.1.013
  • Massimi, L., Conti, M. E., Mele, G., Ristorini, M., Astolfi, M. L., & Canepari, S. (2019). Lichen transplants as indicators of atmospheric element concentrations: a high spatial resolution comparison with PM10 samples in a polluted area (Central Italy). Ecological Indicators, 101, 759-769. DOI: 10.1016/j.ecolind.2018.12.051
  • Matassoni, L., Pratesi, G., Centioli, D., Cadoni, F., Lucarelli, F., Nava, S., & Malesani, P. (2011). Saharan dust contribution to PM10, PM2.5 and PM1 in urban and suburban areas of Rome: A comparison between single-particle SEM-EDS analysis and whole-sample PIXE analysis. Journal of Environmental Monitoring, 13(3), 732-742. DOI: 10.1039/c0em00535e
  • Mikołajczyk, A., Żyniewicz, Ś., & Błachuta, J. (2017). Information On Air Quality In The Area Of Legnica City. Wrocław, Poland: GIOŚ.
  • Muszer, A. (2004). Mineralogical characteristics of metallurgical dust in the vicinity of Głogów. Physicochemical Problems of Mineral Processing, 38(1), 329–340.
  • Muszer, Antoni. (2007). Charakterystyka sferul i minerałów akcesorycznych z wybranych utworów fanerozoicznych i antropogenicznych. Wrocław, Poland: Fundacja Ostoja.
  • Nkansah, M. A., Darko, G., Dodd, M., Opoku, F., Bentum Essuman, T., & Antwi-Boasiako, J. (2017). Assessment of pollution levels, potential ecological risk and human health risk of heavy metals/metalloids in dust around fuel filling stations from the Kumasi Metropolis, Ghana. Cogent Environmental Science, 3(1), 1-19. DOI: 10.1080/23311843.2017.1412153
  • Nowicki, Z. (2009). Underground water of Polish cities (in Polish). Warszawa, Poland: Państwowy Instytut Geologiczny. Oberdörster, G., Oberdörster, E., & Oberdörster, J. (2005). Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environmental Health Perspectives, 113, 823–839. DOI: 10.1289/ehp.7339
  • Oberdörster, G., Sharp, Z., Atudorei, V., Elder, A., Gelein, R., Kreyling, W., & Cox, C. (2004). Translocation of inhaled ultrafine particles to the brain. Inhalation Toxicology, 16(6-7), 437-45. DOI: 10.1080/08958370490439597
  • Olawoyin, R., Schweitzer, L., Zhang, K., Okareh, O., & Slates, K. (2018). Index analysis and human health risk model application for evaluating ambient air-heavy metal contamination in Chemical Valley Sarnia. Ecotoxicology and Environmental Safety, 148, 72-81. DOI: 10.1016/j.ecoenv.2017.09.069
  • Pachauri, T., Singla, V., Satsangi, A., Lakhani, A., & Maharaj Kumari, K. (2013). SEM-EDX characterization of individual coarse particles in Agra, India. Aerosol and Air Quality Research, 13(2), 523–536. DOI: 10.4209/aaqr.2012.04.0095
  • Reed, S. J. B. (2005). Electron microprobe analysis and scanning electron microscopy in geology (2 ed.). Cambridge, England: Cambridge University Press. Roberts, M. J. (1995). Spiders of Britain and Northern Europe. London, England: Harpercollins Publishers.
  • Roduit, N. (2007). JmicroVision : un logiciel d’analyse d’images pétrographiques polyvalent. Université de Genève. Rybak, J., & Olejniczak, T. (2014). Accumulation of polycyclic aromatic hydrocarbons (PAHs) on the spider webs in the vicinity of road traffic emissions. Environmental Science and Pollution Research, 21(3), 2313-2324. DOI: 10.1007/s11356-013-2092-0
  • Rybak, J. (2015). Accumulation of Major and Trace Elements in Spider Webs. Water, Air, and Soil Pollution, 226(4), 105. DOI: 10.1007/s11270-015-2369-7
  • Schintu, M., Cogoni, A., Durante, L., Cantaluppi, C., & Contu, A. (2005). Moss (Bryum radiculosum) as a bioindicator of trace metal deposition around an industrialised area in Sardinia (Italy). Chemosphere, 60(5), 610-618. DOI: 10.1016/j.chemosphere.2005.01.050
  • Sokal, R. R., & Rohlf, F. J. (2012). Biometry: the principles and practice of statistics in biological research (4 ed.). New York, USA: W.H. Freeman and Company.
  • StataCorp. (2013). Stata Statistical Software: Release 13. College Station, TX: StataCorp LP.
  • Stojanowska, A., Rybak, J., Bożym, M., Olszowski, T., & Bihałowicz, J. S. (2020). Spider webs and lichens as bioindicators of heavy metals: A comparison study in the vicinity of a copper smelter (Poland). Sustainability, 12(19), 8066. DOI: 10.3390/su12198066
  • Stojanowska, A., Zeynalli, F., Wróbel, M., & Rybak, J. (2022). The use of spider webs in the monitoring of air quality – a review. Integrated Environmental Assessment and Management. DOI: 10.1002/ieam.460750 A. Trzyna, J. Rybak, W. Bartz, M. Górka
  • Stojanowska, A., Mach, T., Olszowski, T., Bihałowicz, J. S., Górka, M., Rybak, J., Rajfur, M., & Świsłowski, P. (2021). Air Pollution Research Based on Spider Web and Parallel Continuous Particulate Monitoring—A Comparison Study Coupled with Identification of Sources. Minerals, 11(8), 812. DOI: 10.3390/min11080812
  • Strzelec, Ł., & Niedźwiecka, W. (2012). Stan środowiska naturalnego w rejonie oddziaływania hut miedzi. Kierunki zmian. Environmental Medicine, 15(2), 21–31.
  • Teper, E. (2009). Dust-particle migration around flotation tailings ponds: Pine needles as passive samplers. Environmental Monitoring and Assessment, 154, 383–391. DOI: 10.1007/s10661-008-0405-4
  • Topolnicki, M. (2021).Informator Huty Miedzi Legnica (in Polish). Poland: KGHM.
  • Tyszka, R., Pietranik, A., Kierczak, J., Ettler, V., Mihaljevič, M., & Medyńska-Juraszek, A. (2016). Lead isotopes and heavy minerals analyzed as tools to understand the distribution of lead and other potentially toxic elements in soils contaminated by Cu smelting (Legnica, Poland). Environmental Science and Pollution Research, 23(23), 24350-24363. DOI: 10.1007/s11356-016-7655-4
  • US EPA. (1989). Risk assessment guidance for superfund, Vol. I: Human health evaluation. Washington, United States: Environmental Protection Agency.
  • US EPA. (2001). Risk Assessment Guidance for Superfund (RAGS) Volume III - Part A: Process for Conducting Probabilistic Risk Assessment, Appendix B. Washington, United States: Environmental Protection Agency.
  • US EPA. (2004). Integrated Risk Information System: Lead. Washington, United States: Environmental Protection Agency.
  • US EPA. (2009). Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment). Washington, United States: Environmental Protection Agency.
  • US EPA. (2014). Framework for Human Health Risk Assessment to Inform Decision Making. Washington, United States: Environmental Protection Agency.
  • Voutsa, D., Anthemidis, A., Giakisikli, G., Mitani, K., Besis, A., Tsolakidou, A., & Samara, C. (2015). Size distribution of total and water-soluble fractions of particle-bound elements—assessment of possible risks via inhalation. Environmental Science and Pollution Research, 22(17), 13412-13426. DOI: 10.1007/s11356-015-4559-7
  • Wang, L., Gong, H., Liao, W., & Wang, Z. (2015). Accumulation of particles on the surface of leaves during leaf expansion. Science of the Total Environment, 532(1), 420-434. DOI: 10.1016/j.scitotenv.2015.06.014
  • Weather Online. (2018, August). Weather Online. Retrieved August 15, 2022, from https://www.woeurope.eu/
  • WHO. (2006). Health risks of particulate matter from longrange transboundary air pollution. Geneva, Switzerland: World Health Organization.
  • WHO. (2019). Exposure to arsenic: a major public health concern. Geneva, Switzerland: World Health Organization.
  • Xiao-li, S., Yu, P., Hose, G. C., Jian, C., & Feng-xiang, L. (2006). Spider webs as indicators of heavy metal pollution in air. Bulletin of Environmental Contamination and Toxicology, 76(2), 271-277 DOI: 10.1007/s00128-006-0917-y
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ef6ae9c9-7114-41f6-975c-67cb7f9949cd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.