PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assesment of cortical bone thickness using cepstrum analysis. Simulation study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Assessment of cortical bone thickness is important from a medical point of view because bone-layer thickness has a diagnostic value. The thinning of the cortical bone layer reduces the mechanical strength of the bone and exposes it to an increased risk of osteoporotic fractures [1]. The hip bone (proximal femur) is the most critical fracture site. The thickness of the cortical layer in the proximal femur is often too thin to be detected from ultrasonic echoes using traditional peak detection methods (for example the envelope method). In such a case the cepstrum analysis technique may be very useful. In this study the cepstrum method was applied to analyze numerically simulated echoes reflected from the layer and to determine layer thickness. In simulation, the transducer operated at 1 MHz and pulses of a 1.5 µs duration were assumed. The thickness of the thinnest layer for which the applied cepstrum analysis gave, the correct result equaled 1 mm, which was ¼ ƛ(ƛ– wavelength of an ultrasonic wave). That value of the d/ƛ ratio is sufficient for future measurements performed in-vivo conditions.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
47--56
Opis fizyczny
Bibliogr. 18 poz., rys.
Twórcy
autor
  • Ultrasound Department,Institute of Fundamental Technological Research Polish Academy of Sciences, Pawińskiego 5b, 02-106 Warszawa, Poland
  • Ultrasound Department,Institute of Fundamental Technological Research Polish Academy of Sciences, Pawińskiego 5b, 02-106 Warszawa, Poland
  • Ultrasound Department,Institute of Fundamental Technological Research Polish Academy of Sciences, Pawińskiego 5b, 02-106 Warszawa, Poland
Bibliografia
  • [1] J. Karjalainen, O. Riekkinen, J. Toyras, H. Kroger, J. Jurvelin, Ultrasonic Assessment of Cortical Bone Thickness In Vitro and In Vivo, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 55, 2008.
  • [2] P. Laugier, G. Haiat Bone Quantitative Ultrasound, Springer 2011.
  • [3] J. Karjalainen, Novel Pulse-Echo Ultrasound Methods for Diagnostics of Osteoporosis, Phd thesis, University of Eastern Finland, 2011.
  • [4] K.A. Wear, Autocorrelation and cepstral methods for measurement of tibial cortical thickness, Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, Vol. 50, 2003.
  • [5] F. Hagglund, J. Martinsson, J. E. Carlson and C. Carlander, Model-Based Characterization of Thin Layers Using Pulse-Echo, Ultrasound Proceedings of the International Congress on Ultrasonics (Paper ID 1562, Session R17: NDT Modeling and Simulation), Vienna 2007.
  • [6] A. Briggs , O. Kolosov, Acoustic Microscopy, Oxford University Press, New York 2010.
  • [7] Vikram K. Kinra and Changyi Zhu, Ultrasonic nondestructive evaluation of thin (subwavelength) coatings, J. Acoust. Soc. Am. 93 (5), 2454-2467, 1993.
  • [8] D. Rohrback, Quantitative ultrasound in transverse transmition for bone quality assessment and monitoring fracture healing, Phd Thesis Humboldt Uniwersitat, Berlin 2013.
  • [9] L. M. Brekhovskikh, O. A. Godin, Acoustics of Layered Media, Springer-Verlag Berlin Heidelberg 1990.
  • [10] A. Nowicki, Ultradźwięki w medycynie, Wydawnictwo IPPT PAN, Warszawa 2010.
  • [11] L. M. Brekhovskikh, Waves in Layered Media, Academic Press New York 1960.
  • [12] Y. Kawamura, M. Tsurushima, Y. Ito, K. Mizutani, S. Yamachika, N. Aoshima, Fundamental study on ultrasonic measurement system to detect penetration of boulders using cepstrum analysis, Ultrasonics, 46(3):266-269, 2007.
  • [13] D. G. Childers, D. P. Skinner, R. C. Kemerait, The Cepstrum: A Guide to Processing, Proceedings of the IEEE, Vol. 65, 1428-1443, 1977.
  • [14] A. V. Oppenheim, R. W. Schafer, Digital Signal Processing, Prentice-Hall International, Inc., New Jersey 1975.
  • [15] B. P. Bogert, J. F. Ossanna, The heuristics of cepstrum analysis of a stationary complex echoed Gaussian signal in stationary Gaussian noise, IEEE Transactions on Information Theory, Vol. 12, 373-380, 1966.
  • [16] D. Cotter, J. Michaels, Z. Zhang, E. Ghabour, T. Nelligean, A. Abbate, D. Kass, G. Elfbaum, High Frequency Ultrasonic Thickness and Acoustic Velocity Measurement Method for Advanced Material and Component Characterization, 8th ECNDT Proceedings, European Conference on Nondestructive Testing, Barcelona, 2002.
  • [17] Y. Bigea, Z. Hanfenga, W. Rongb, Analysis of microstructural alterations of normal and pathological breast tissue in vivo using the AR cepstrum, Ultrasonics, Vol. 44, 211-215, 2006.
  • [18] A. Nowicki, Wstęp do ultrasonografii, Podstawy fizyczne i instrumentacja, medipage, Warszawa 2003.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ef66591e-7ece-4d82-8e88-51a652d4966a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.