PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Logging evaluation of favorable areas of a low porosity and permeability sandy conglomerate reservoir based on machine learning

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The sandy conglomerate reservoir in layer Es3 of the Liaohe Eastern Depression has good potential for oil reservoir exploration and has been identified as a key area for future exploration. The low porosity and permeability, complex lithology, and strong heterogeneity of the target layer make it difficult to predict favorable reservoirs. The objective of this study is to analyze and process conventional logging data to extract feature parameters that affect lithology by establishing a decision tree lithology classifier. Principal component analysis is used to reduce data dimensionality, and the elbow method is applied to the clustering algorithm to establish the optimal number of clusters for the automatic classification of reservoir types. Further, support vector machines are used for lithology classification based on features with higher classification capabilities. The results show that the support vector machine lithology recognition method based on feature selection achieved an accuracy of 91.8%. The processing of actual well data has verified the feasibility of the method. Based on the combination of core experiments and oil testing results, the characteristics of three types of reservoirs were presented, and potential reservoir zones were proposed for drilling wells. The comprehensive analysis and the practical application of the developed method reveal that the class I reservoir has high hydrocarbon production and could be the most favorable reservoir in the Es3 sandy conglomerate. The processing data of lithology identification and reservoir classification evaluation are consistent with core data and hydrocarbon production data, verifying the effectiveness and practicability of the method proposed in this paper. The results of this study will serve as a reference for low porosity and permeability sandy conglomerate reservoir evaluation based on machine learning in the target area.
Czasopismo
Rocznik
Strony
711--725
Opis fizyczny
Bibliogr. 78 poz.
Twórcy
  • School of Earth Science, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
  • Key Laboratory Ministry of Education for Continental Shale Oil and Gas Accumulation and Efficient Development, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
autor
  • School of Earth Science, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
  • Key Laboratory Ministry of Education for Continental Shale Oil and Gas Accumulation and Efficient Development, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
autor
  • School of Earth Science, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
  • Key Laboratory Ministry of Education for Continental Shale Oil and Gas Accumulation and Efficient Development, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
autor
  • No.3 Drilling Company of Daqing Drilling Engineering Company, CNPC, Daqing 163411, Heilongjiang, China
autor
  • School of Earth Science, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
  • Key Laboratory Ministry of Education for Continental Shale Oil and Gas Accumulation and Efficient Development, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
autor
  • International Company, China Petroleum Logging CO. LTD., CNPC, Beijing 102200, China
Bibliografia
  • 1. Adnan RM, Khosravinia P, Karimi B, Kisi O (2021) Prediction of hydraulics performance in drain envelopes using Kmeans based multivariate adaptive regression spline. Appl Soft Comput 100:107008. https://doi.org/10.1016/j.asoc.2020.107008
  • 2. Akinnikawe O, Lyne S, Roberts J (2018) Synthetic well log generation using machine learning techniques. In: SPE/AAPG/SEG unconventional resources technology conference 2018, URTC 2018, July, 23-25. https://doi.org/10.15530/urtec-2018-2877021
  • 3. Alkinani HH, Al-Hameedi ATT, Dunn-Norman S, Flori RE, Alsaba MT, Amer AS (2019) Applications of artificial neural networks in the petroleum industry: a review. In: SPE middle east oil and gas show and conference, MEOS, proceedings, 2019-March (1957). https://doi.org/10.2118/195072-ms
  • 4. Alzubaidi F, Mostaghimi P, Swietojanski P, Clark SR, Armstrong RT (2021) Automated lithology classification from drill core images using convolutional neural networks. J Pet Sci Eng 197:107933. https://doi.org/10.1016/j.petrol.2020.107933
  • 5. Ao Y, Zhu L, Guo S, Yang Z (2020) Probabilistic logging lithology characterization with random forest probability estimation. Com-put Geosci 144:104556. https://doi.org/10.1016/j.cageo.2020. 104556
  • 6. Barrios Castellanos M, Serpa AL, Biazussi JL, Monte Verde W, do Socorro Dias ArrifanoSassim N (2020) Fault identification using a chain of decision trees in an electrical submersible pump operating in a liquid-gas flow. J Pet Sci Eng. https://doi.org/10.1016/j. petrol.2019.106490
  • 7. Bergen KJ, Johnson PA, De Hoop MV, Beroza GC (2019) Machine learning for data-driven discovery in solid Earth geoscience. Science 363(6433):5. https://doi.org/10.1126/science.aau0323
  • 8. Bize-Forest N, Lima L, Baines V, Boyd A, Abbots F, Barnett A (2018) Using machine-learning for depositional facies prediction in a complex carbonate reservoir. In: SPWLA 59th annual logging symposium
  • 9. Dev VA, Eden MR (2019) Formation lithology classification using scalable gradient boosted decision trees. Comput Chem Eng 128:392-404. https://doi.org/10.1016/j.compchemeng.2019.06. 001
  • 10. Dong X, Zhang T, Yao W, Hu T, Li J, Jia C, Guan J (2019) A method to quantitatively characterize tight glutenite reservoir pore structure. In: Society of petroleum engineers—SPE reservoir characterisation and simulation conference and exhibition 2019, RCSC 2019, SPE-196649-MS. https://doi.org/10.2118/ 196649-ms
  • 11. Dong Xu, Shen LW, Liu X, Zhang P, Sun Y, Yan W, Jiang L, Wang F, Sun J (2020) NMR characterization of a tight sand’s pore structures and fluid mobility: an experimental investigation for CO2 EOR potential. Mar Pet Geol 118:104460. https://doi.org/10. 1016/j.marpetgeo.2020.104460
  • 12. Feng Z, Yin C, Lu J, Zhu Y (2013) Formation and accumulation of tight sandy conglomerate gas: a case from the Lower Cretaceous Yingcheng Formation of Xujiaweizi fault depression, Songliao Basin. Pet Explor Dev 40(6):650-656. https://doi.org/10.11698/ PED.2013.06.02
  • 13. Golsanami N, Sun J, Liu Y, Yan W, Lianjun C, Jiang L, Dong H, Zong C, Wang H (2019) Distinguishing fractures from matrix pores based on the practical application of rock physics inversion and NMR data: a case study from an unconventional coal reservoir in China. J Nat Gas Sci Eng 65:145-167. https://doi.org/10.1016/j. jngse.2019.03.006
  • 14. Golsanami N, Bakhshi E, Yan W, Dong H, Barzgar E, Zhang G, Mah-baz S (2020) Relationships between the geomechanical parameters and Archie’s coefficients of fractured carbonate reservoirs: a new insight. Energy Sources Part A Recov Util Environ Effects. https:// doi.org/10.1080/15567036.2020.1849463
  • 15. Golsanami N, Zhang X, Yan W, Yu L, Dong H, Dong X, Cui L, Jayasuriya MN, Fernando SG, Barzgar E (2021) Nmr-based study of the pore types’ contribution to the elastic response of the reservoir rock. Energies 14(5). https://doi.org/10.3390/en14051513
  • 16. Hadavimoghaddam F, Ostadhassan M, Sadri MA, Bondarenko T, Chebyshev I, Semnani A (2021) Prediction of water saturation from well log data by machine learning algorithms: Boosting and super learner. J Mar Sci Eng 9(6):666. https://doi.org/10.3390/ jmse9060666
  • 17. Hou M, Cao H, Li H, Chen A, Wei A, Chen Y, Wang Y, Zhou X, Ye T (2019) Characteristics and controlling factors of deep buried-hill reservoirs in the BZ19-6 structural belt, Bohai sea area. Nat Gas Ind B 6(4):305-316. https://doi.org/10.1016/j.ngib.2019.01.011
  • 18. Huang X, Ye Y, Guo H, Cai Y, Zhang H, Li Y (2014) DSKmeans: a new kmeans-type approach to discriminative subspace clustering. Knowl Based Syst 70:293-300. https://doi.org/10.1016/j.knosys. 2014.07.009
  • 19. Jesper M, Pag F, Vajen K, Jordan U (2021) Annual industrial and commercial heat load profiles: modeling based on k-means clustering and regression analysis. Energy Convers Manag X 10:100085. https://doi.org/10.1016/j.ecmx.2021.100085
  • 20. Jiang Y, Sun J, Gao J, Zhang P, Cui J (2017) A simulation of mud invasion and characteristics of array laterolog responses in a low-permeability gas reservoir: a case study. J Geophys Eng 14(3):456-465. https://doi.org/10.1088/1742-2140/aa5e69
  • 21. Jiang Y, Zhou J, Fu X, Cui L, Fang C, Cui J (2021) Analyzing the origin of low resistivity in gas-bearing tight sandstone reservoir. Geofluids 2021:1-5. https://doi.org/10.1155/2021/4341804
  • 22. Juvonen A, Sipola T, Hämäläinen T (2015) Online anomaly detection using dimensionality reduction techniques for HTTP log analysis. Comput Netw 91:46-56. https://doi.org/10.1016/j.comnet.2015. 07.019
  • 23. Kadkhodaie-Ilkhchi A, Rezaee MR, Rahimpour-Bonab H (2009) A committee neural network for prediction of normalized oil content from well log data: an example from South Pars Gas Field, Persian Gulf. J Pet Sci Eng 65(1-2):23-32. https://doi.org/10.1016/j. petrol.2008.12.012
  • 24. Karimi AM, Sadeghnejad S, Rezghi M (2021) Well-to-well correlation and identifying lithological boundaries by principal component analysis of well-logs. Comput Geosci 157:104942. https://doi.org/ 10.1016/j.cageo.2021.104942
  • 25. Karimpouli S, Fathianpour N, Roohi J (2010) A new approach to improve neural networks’ algorithm in permeability prediction of petroleum reservoirs using supervised committee machine neural network (SCMNN). J Pet Sci Eng 73(3-4):227-232. https://doi. org/10.1016/j.petrol.2010.07.003
  • 26. Konaté AA, Pan H, Ma H, Cao X, YevenyoZiggah Y, Oloo M, Khan N (2015) Application of dimensionality reduction technique to improve geophysical log data classification performance in crystalline rocks. J Pet Sci Eng 133:633-645. https://doi.org/10. 1016/j.petrol.2015.06.035
  • 27. Krézsek C, Filipescu S, Silye L, Majenco L, Doust H (2010) Miocene facies associations and sedimentary evolution of the Southern Transylvanian Basin (Romania): implications for hydrocarbon exploration. Mar Pet Geol 27(1):191-214. https://doi.org/10. 1016/j.marpetgeo.2009.07.009
  • 28. Li Y, Wang H, Wang M, Lian P, Duan T, Ji B (2017) Automatic ldenti-fication of carbonate sedimentary facies based on PCA and KNN using logs. Well Logg Technol 41(1):57-63
  • 29. Li G, Qin J, Xian C, Fan X, Zhang J, Ding Y (2020a) Theoretical understandings, key technologies and practices of tight conglomerate oilfield efficient development: a case study of the Mahu oilfield, Junggar Basin, NW China. Pet Explor Dev 47(6):1275-1290. https://doi.org/10.1016/S1876-3804(20)60135-0
  • 30. Li Z, Kang Y, Feng D, Wang XM, Lv W, Chang J, Zheng WX (2020b) Semi-supervised learning for lithology identification using Laplacian support vector machine. J Pet Sci Eng 195:107510. https:// doi.org/10.1016/j.petrol.2020.107510
  • 31. Li Y, Zhang T, Dai Z, Huang L, Xu Y, Wang X, Fang R, Zhang X, Li T (2021a) Quantitative evaluation methods of tight reservoirs based on multi-feature fusion: a case study of the fourth member of Shahejie Formation in Liaohe Depression. J Pet Sci Eng 198:108090. https://doi.org/10.1016/j.petrol.2020.108090
  • 32. Li N, Xu B, Wu H, Feng Z, Li Y, Wang K, Liu P (2021b) Application status and prospects of artificial intelligence in well logging and formation evaluation. Acta Pet Sin 42(4):508-522. https://doi.org/ 10.7623/syxb202104008
  • 33. Liu X, Shi S, He C, Chang D, Lv P, Liu L (2016) Structural deformation features and its control on hydrocarbon accumulation in Huangjindai oilfield Liaohe Depression. J China Univ Min Tech-nol 45(3):562-567. https://doi.org/10.13247/j.cnki.jcumt.000437. (in Chinese)
  • 34. Liu X, Dong X, Golsanami N, Liu B, Shen LW, Shi Y, Guo Z, Cui L, Sun Y, Du Y, Wei B (2021) NMR characterization of fluid mobility in tight sand: Analysis on the pore capillaries with the nine-grid model. J Nat Gas Sci Eng 94:104069. https://doi.org/10. 1016/j.jngse.2021.104069
  • 35. Liu J, Ge H, Mou S, Wang X, Wang J (2022) Characterization of mesostructure of glutenite reservoirs by ultrasonic characteristics and the velocity heterogeneity. J Pet Sci Eng 208(PB):109436. https:// doi.org/10.1016/j.petrol.2021.109436
  • 36. Lou R, Sun Y, Fan T, Fan H, and Liu L (2022) Influence of multi-trend major fault reactivation during multiphase rifting: Beier Depression, Hailar Basin, NE China. Geol Mag. https://doi.org/10.1017/ S0016756822000565
  • 37. Ma X, Zou Y, Li N, Chen M, Zhang Y, Liu Z (2017) Experimental study on the mechanism of hydraulic fracture growth in a glutenite reservoir. J Struct Geol 97:37-47. https://doi.Org/10.1016/j.jsg. 2017.02.012
  • 38. Nikravesh M, Aminzadeh F (2001) Past, present and future intelligent reservoir characterization trends. J Pet Sci Eng 31(2-4):67-79. https://doi.org/10.1016/S0920-4105(01)00121-8
  • 39. Nishitsuji Y, Exley R (2019) Elastic impedance based facies classification using support vector machine and deep learning. Geophys Prospect 67(4):1040-1054. https://doi.org/10.1111/1365-2478. 12682
  • 40. Pei L, Wang X, Gao G, Liu W (2022) Geochemical heterogeneity, origin and secondary alteration of natural gas inside and outside buried hills of Xinglongtai area, West Sag, Liaohe Depression, Bohai Bay Basin. J Pet Sci Eng 208:109456. https://doi.org/10.1016/j.petrol. 2021.109456
  • 41. Qian C, Yang S, Wang Y, Wu C, Zhang Y (2021) Prediction and modeling of petrophysical parameters of deep-buried, low permeability glutenite reservoirs in Yubei area, Turpan-Hami Basin, China. J Pet Sci Eng 207:109154. https://doi.org/10.1016/j.petrol.2021.109154
  • 42. Ren P, Xu H, Tang D, Li Y, Sun C, Tao S, Li S, Xin F, Cao L (2018) The identification of coal texture in different rank coal reservoirs by using geophysical logging data in northwest Guizhou, China: investigation by principal component analysis. Fuel 230:258-265. https://doi.org/10.1016/j.fuel.2018.05.019
  • 43. Ren Q, Zhang H, Zhang D, Zhao X, Yan L, Rui J (2022) A novel hybrid method of lithology identification based on k-means++ algorithm and fuzzy decision tree. J Pet Sci Eng. https://doi.org/10.1016/j. petrol.2021.109681
  • 44. Rogers JP (2007) New reservoir model from an old oil field: garfield conglomerate pool, Pawnee County, Kansas. Am Assoc Pet Geol Bull 91(10):1349-1365. https://doi.org/10.1306/06140706082
  • 45. Rostamian A, Heidaryan E, Ostadhassan M (2022) Evaluation of different machine learning frameworks to predict CNL-FDC-PEF logs via hyperparameters optimization and feature selection. J Pet Sci Eng 208(PB):109463. https://doi.org/10.1016/j.petrol.2021.109463
  • 46. Ruiyi HAN, Zhuwen W, Wenhua W, Fanghui XU, Xinghua QI, Yitong CUI (2021) Lithology identification of igneous rocks based on XGboost and conventional logging curves, a case study of the eastern depression of Liaohe Basin. J Appl Geophys 195:104480. https://doi.org/10.1016/j.jappgeo.2021.104480
  • 47. Salakhutdinov RR, Hinton GE (2006) Reducing the dimensionality of data with neural networks. Science 313(5786):504-507. https://doi. org/10.1038/060515a0
  • 48. Shi X, Huang W, Lu S, Wang Y, Wu S, Li Y (2019) The rock mechanical properties and failure behavior of glutenite. In: 5th ISRM young scholars’ symposium on rock mechanics and international symposium on rock engineering for innovative future. YSRM 2019, pp 181-184
  • 49. Song F, Su N, Kong X, Liu C, Song C (2020) Sedimentary characteristics of humid alluvial fan and its control on hydrocarbon accumulation: a case study on the northern margin of the Junggar Basin, west China. J Pet Sci Eng 187:106729. https://doi.org/10.1016/j.petrol. 2019.106729
  • 50. Sun H, Li X, Zhong J, Fan W, Liu L, Zhou J (2013) Characteristics and controlling factors of tight sandstone reservoir of the third member of Shahejie Formation in the southern West Depression, Liaohe Basin. Lithol Reserv 25(6):53-60. https://doi.org/10.3969/j.issn. 1673-8926.2013.06.010. (in Chinese)
  • 51. Tabasi S, Soltani Tehrani P, Rajabi M, Wood DA, Davoodi S, Ghorbani H, Mohamadian N, Ahmadi Alvar M (2022) Optimized machine learning models for natural fractures prediction using conventional well logs. Fuel 326:124952. https://doi.org/10.1016/j.fuel.2022. 124952
  • 52. Teama MA, Nabawy BS (2016) Petrophysical evaluation of the hydrocarbon potential of the Lower Cretaceous Kharita clastics, North Qarun oil field, Western Desert, Egypt. J Afr Earth Sci 121:62-71. https:// doi.org/10.1016/j.jafrearsci.2016.05.022
  • 53. Troccoli EB, Cerqueira AG, Lemos JB, Holz M (2022) K-means clustering using principal component analysis to automate label organization in multi-attribute seismic facies analysis. J Appl Geophys 198:104555. https://doi.org/10.1016/j.jappgeo.2022.104555
  • 54. Valentín MB, Bom CR, Coelho JM, Correia MD, de Albuquerque MP, de Albuquerque MP, Faria EL (2019) A deep residual convolutional neural network for automatic lithological facies identification in Brazilian pre-salt oilfield wellbore image logs. J Pet Sci Eng 179:474503. https://doi.org/10.1016/j.petrol.2019.04.030
  • 55. Wu PY, Jain V, Kulkarni MS, Abubakar A (2018) Machine learningbased method for automated well log processing and interpretation. In: SEG technical program expanded abstracts, 2041-2045. https:// doi.org/10.1190/segam2018-2996973.1
  • 56. Yan JP, He X, Hu QH, Liang Q, Tang HM, Feng CZ, Geng B (2018a) Lower Es3 in Zhanhua Sag, JiyangDepression: a case study for lithofacies classification in lacustrine mud shale. Appl Geophys 15(2):151-164. https://doi.org/10.1007/s11770-018-0678-5
  • 57. Yan J, Fan J, Wang M, Li Z, Hu Q, Chao J (2018b) Rock fabric and pore structure of the Shahejie sandy conglomera from the Dongy-ing depression in the Bohai Bay Basin, East China. Marine and Petroleum Geology 97:624-638. https://doi.org/10.1016/j.marpe tgeo.2018.07.009
  • 58. Yan W, Sun J, Golsanami N, Li M, Cui L, Dong H, Sun Y (2019) Evaluation of wettabilities and pores in tight oil reservoirs by a new experimental design. Fuel 252:272-280. https://doi.org/10.1016/j. fuel.2019.04.130
  • 59. Yan W, Sun J, Dong H, Cui L (2021) Investigating NMR-based absolute and relative permeability models of sandstone using digital rock techniques. J Pet Sci Eng 207:109105. https://doi.org/10.1016/j. petrol.2021.109105
  • 60. Yang W, Hou J, Liu Y, Dou L, Wang X (2022) The pore structures of different lithofacies in low-permeability sandy conglomerate reservoirs and their diagenetic impacts: A case study from the Es4 member of the northern steep slope in Dongying Depression, Bohai Bay Basin. NE China. Mar Pet Geol 136:105481.https://doi.org/10. 1016/j.marpetgeo.2021.105481
  • 61. Yasin Q, Ding Y, Baklouti S, Boateng CD, Du Q, Golsanami N (2022) An integrated fracture parameter prediction and characterization method in deeply-buried carbonate reservoirs based on deep neural network. J Pet Sci Eng 208(PA):109346. https://doi.org/10.1016/j. petrol.2021.109346
  • 62. Ye T, Chen A, Niu C, Wang Q (2021) Structural, petrophysical and lithological characterization of crystalline bedrock buried-hill reservoirs: a case study of the southern jinzhou oilfield in offshore Bohai Bay Basin, north China. J Pet Sci Eng 196:107950. https://doi.org/10. 1016/j.petrol.2020.107950
  • 63. Yuan G, Gluyas J, Cao Y, Oxtoby NH, Jia Z, Wang Y, Xi K, Li X (2015) Diagenesis and reservoir quality evolution of the Eocene sandstones in the northern Dongying Sag, Bohai Bay Basin, East China. Mar Pet Geol 62:77-89. https://doi.org/10.1016/j.marpetgeo.2015.01.006
  • 64. Zahra S, Ghazanfar MA, Khalid A, Azam MA, Naeem U, Prugel-Bennett A (2015) Novel centroid selection approaches for KMeans-cluster-ing based recommender systems. Inf Sci 320:156-189. https://doi. org/10.1016/j.ins.2015.03.062
  • 65. Zeng F, Dong C, Lin C, Wu Y, Tian S, Zhang X, Lin J (2021) Analyzing the effects of multi-scale pore systems on reservoir properties—a case study on Xihu Depression, East China Sea Shelf Basin, China. J Pet Sci Eng 203:108609. https://doi.org/10.1016/j.petrol.2021. 108609
  • 66. Zhang L, Lu S, Xiao D, Gu M (2017) Characterization of full pore size distribution and its significance to macroscopic physical parameters in tight glutenites. J Nat Gas Sci Eng 38:434-449. https://doi.org/10. 1016/j.jngse.2016.12.026
  • 67. Zhang P, Sun J, Deng Z, Lin L, Wang J (2022) Logging productivity grading and lateral prediction of seismic attributes in a beach-bar sandstone reservoir. Geophys Prospect Pet 61(2):339-347
  • 68. Zhao P, Mao Z, Huang Z, Zhang C (2016a) A new method for estimating total organic carbon content from well logs. AAPG Bull 100(8):1311-1327. https://doi.org/10.1306/02221615104
  • 69. Zhao Z, Xu S, Jiang X, Lin C, Cheng H, Cui J, Jia L (2016b) Deep strata geologic structure and tight conglomerate gas exploration in Songliao Basin, East China. Pet Explor Dev 43(1):12-23. https:// doi.org/10.11698/PED.2016.01.02
  • 70. Zhao J, Zou C, Fu H, Xiao L, Peng C, Niu Y (2017) Pore structure characterization of the Cretaceous Quantou Formation: results from microresistivity imaging logs in the second scientific drilling borehole (SK-2 east borehole) Songliao basin, northeast China. J Pet Sci Eng 159:915-926. https://doi.org/10.1016/j.petrol.2017. 09.067
  • 71. Zhao P, Fu J, Shi Y, Li G, Ostadhassan M, Luo M, Mao Z (2020) Hydrocarbon saturation in shale oil reservoirs by inversion of dielectric dispersion logs. Fuel 266:116934. https://doi.org/10. 1016/j.fuel.2019.116934
  • 72. Zhou J, Liu B, Shao M, Yin C, Jiang Y, Song Y (2022) Lithologic classification of pyroclastic rocks: a case study for the third member of the Huoshiling Formation, Dehui fault depression, Songliao Basin, NE China. J Pet Sci Eng 214:110456. https://doi.org/10. 1016/j.petrol.2022.110456
  • 73. Zhou J, Liu B, Shao M, Song Y, Ostadhassan M, Yin C, Liu J, Jiang Y (2023) Pore structure analysis and classification of pyroclastic reservoirs in the Dehui fault depression based on experimental and well-logging data. Geoenergy Sci Eng 224:211620. https:// doi.org/10.1016/j.geoen.2023.211620
  • 74. Zhu L, Zhang C, Wei Y, Zhang C (2017) Permeability prediction of the tight sandstone reservoirs using hybrid intelligent algorithm and nuclear magnetic resonance logging data. Arab J Sci Eng 42(4):1643-1654. https://doi.org/10.1007/s13369-016-2365-
  • 75. Zhu M, Liu Z, Liu H, Li X, Liang S, Gong J, Zhang P (2020) Structural division of granite weathering crusts and effective reservoir evaluation in the western segment of the northern belt of Dongying Sag, Bohai Bay Basin, NE China. Mar Pet Geol. https://doi.org/ 10.1016/j.marpetgeo.2020.104612
  • 76. Zhu L, Zhou X, Liu W, Kong Z (2022) Total organic carbon content logging prediction based on machine learning: a brief review. Energy Geosci. https://doi.org/10.1016/j.engeos.2022.03.001
  • 77. Zonneveld JP, Moslow TF (2004) Exploration potential of the father G shoreface conglomerate trend: evidence from outcrop. Bull Can Pet Geol 52(1):23-38. https://doi.org/10.2113/52.1.23
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ef64fd64-6982-4397-a208-4d79e3ae121d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.