PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Size‑dependent constitutive model incorporating grain refinement and martensitic transformation

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The deformation behaviour of materials at the micro-scale level is different from that at the macro-scale level due to the effect of grain size (GS). The mechanism of the influence on martensitic transformation by GS is still unclear, and there are relatively few studies on the relationship between grain refinement and martensitic transformation, most of which focus on the relationship between the initial GS of the material and martensitic transformation. Therefore, in this study, the interaction between grain refinement and martensitic transformation was investigated using a dislocation density-based multiscale constitutive model that incorporated dislocation sliding, strain-induced martensitic transformation (SIMT) related to grain size, and grain refinement. The proposed model evaluated the GS-dependent deformation behaviour of 316L stainless steel (SS). Subsequently, a genetic algorithm was used to determine the parameters of the established model, and the calculated results were compared with that of the experimental data to verify the accuracy of the model. The developed multiscale constitutive model was implemented in Abaqus user subroutine to further investigate the deformation mechanism and validate its accuracy. The results demonstrated that the GS had a significant effect on the SIMT, with the volume fraction of martensite increasing with a rise in the initial austenite GS. In addition, grain refinement affected SIMT and the growth rate of martensite content decreased with the grain refinement caused by deformation. The formation of martensite led to grain refinement, with the refined grains producing negative feedback on the SIMT, thus inhibiting the occurrence of martensitic transformation. This study revealed the microscopic deformation mechanism of 316L SS and provided a constitutive model for micro-forming.
Rocznik
Strony
art. no. e38, 2023
Opis fizyczny
Bibliogr. 49 poz., rys., tab., wykr.
Twórcy
  • School of Mechanical Engineering, University of Science and Technology Beijing, Haidian District, No. 30 Xueyuan Road, Beijing 100083, China
autor
  • School of Mechanical Engineering, University of Science and Technology Beijing, Haidian District, No. 30 Xueyuan Road, Beijing 100083, China
autor
  • School of Mechanical Engineering, University of Science and Technology Beijing, Haidian District, No. 30 Xueyuan Road, Beijing 100083, China
  • School of Mechanical Engineering, University of Science and Technology Beijing, Haidian District, No. 30 Xueyuan Road, Beijing 100083, China
autor
  • School of Mechanical Engineering, University of Science and Technology Beijing, Haidian District, No. 30 Xueyuan Road, Beijing 100083, China
  • Beijing Laboratory of Modern Transportation Metal Materials and Processing Technology, Beijing 100083, China
autor
  • School of Mechanical Engineering, University of Science and Technology Beijing, Haidian District, No. 30 Xueyuan Road, Beijing 100083, China
  • Beijing Laboratory of Modern Transportation Metal Materials and Processing Technology, Beijing 100083, China
Bibliografia
  • 1. Engel U, Eckstein R. Microforming-from basic research to its realization. J Mater Process Tech. 2002;125–126:35-44. https://doi.org/10.1016/S0924-0136(02)00415-6.
  • 2. Lederer M, Groger V, Khatibi G, Weiss B. Size dependency of mechanical properties of high purity aluminium foils. Mater Sci Eng. 2010;527:590-9. https://doi.org/10.1016/j.msea.2009.08.016.
  • 3. Vollertsen F, Biermann D, Hansen HN, Jawahir IS, Kuzman K. Size effects in manufacturing of metallic components. CIRP Ann. 2009;58:566-87. https://doi.org/10.1016/j.cirp.2009.09.002.
  • 4. Shen YF, Li XX, Sun X, Wang YD, Zuo L. Twinning and martensite in a 304 austenitic stainless steel. Mater Sci Eng. 2012;552:514-22. https://doi.org/10.1016/j.msea.2012.05.080.
  • 5. Naghizadeh M, Mirzadeh H. Effects of grain size on mechanical properties and work-hardening behavior of aisi 304 austenitic stainless steel. Steel Res Int. 2019;90:1900153. https://doi.org/10.1002/srin.20190 0153.
  • 6. Chobaut N, Drezet J, Mischler S, Nguyen V, De Marco B, Dobler S, Rosset E. Miniaturized tube fixed plug drawing: determination of the friction coefficients and drawing limit of 316 lvm stainless steel. J Mater Process Tech. 2019;263:396-407. https://doi.org/10.1016/j.jmatprotec.2018.08.037.
  • 7. Ahmedabadi PM, Kain V, Agrawal A. Modelling kinetics of strain-induced martensite transformation during plastic deformation of austenitic stainless steel. Mater Design. 2016;109:466-75. https://doi.org/10.1016/j.matdes.2016.07.106.
  • 8. Soleimani M, Kalhor A, Mirzadeh H. Transformation-induced plasticity (trip) in advanced steels: a review. Mater Sci Eng. 2020;795:140023. https://doi.org/10.1016/j.msea.2020.140023.
  • 9. Meng B, Liu YZ, Wan M, Fu MW. A multiscale constitutive model coupled with martensitic transformation kinetics for micro-scaled plastic deformation of metastable metal foils. Int J Mech Sci. 2021;202-203:106503. https://doi.org/10.1016/j.ijmec sci.2021.106503.
  • 10. Kisko A, Misra RDK, Talonen J, Karjalainen LP. The influence of grain size on the strain-induced martensite formation in tensile straining of an austenitic 15cr-9mn-ni-cu stainless steel. Mater Sci Eng. 2013;578:408-16. https://doi.org/10.1016/j.msea.2013.04.107.
  • 11. Challa VSA, Wan XL, Somani MC, Karjalainen LP, Misra RDK. Strain hardening behavior of phase reversion-induced nanograined/ultrafine-grained (ng/ufg) austenitic stainless steel and relationship with grain size and deformation mechanism. Mater Sci Eng. 2014;613:60-70. https://doi.org/10.1016/j.msea.2014.06.065.
  • 12. Misra RDK, Challa VSA, Venkatsurya PKC, Shen YF, Somani MC, Karjalainen LP. Interplay between grain structure, deformation mechanisms and austenite stability in phase-reversion-induced nanograined/ultrafine-grained austenitic ferrous alloy. Acta Mater. 2015;84:339-48. https://doi.org/10.1016/j.actamat.2014.10.038.
  • 13. Yeddu HK. Phase-field modeling of austenite grain size effect on martensitic transformation in stainless steels. Comp Mater Sci. 2018;154:75-83. https://doi.org/10.1016/j.commatsci.2018.07.040.
  • 14. Gu J, Zhang L, Ni S, Song M. Effects of grain size on the microstructures and mechanical properties of 304 austenitic steel processed by torsional deformation. Micron. 2018;105:93-7. https://doi.org/10.1016/j.micron.2017.12.003.
  • 15. Varma SK, Lakyanam J, Murr LE, Srinivas V. Effect of grain size on deformation-induced martensite formation in 304 and 316 stainless steels during room temperature tensile testing. J Mater Sci Lett. 1994;13:107-11. https://doi.org/10.1007/BF00416816.
  • 16. Shrinivas V, Varma SK, Murr LE. Deformation-induced martensitic characteristics in 304 and 316 stainless steels during room-temperature rolling. Metall Mater Trans A. 1995;26:661-71. https://doi.org/10.1007/BF02663916.
  • 17. Mandal A, Morankar S, Sen M, Samanta S, Singh SB, Chakrabarti D. A descriptive model on the grain size dependence of deformation and martensitic transformation in austenitic stainless steel. Metall Mater Trans A. 2020;51:3886-905. https://doi.org/10.1007/s11661-020-05861-7.
  • 18. Sun G, Zhao M, Du L, Wu H. Significant effects of grain size on mechanical response characteristics and deformation mechanisms of metastable austenitic stainless steel. Mater Charact. 2022;184:111674. https://doi.org/10.1016/j.matchar.2021.111674.
  • 19. Zhou B, Wang L, Wang J, Maldar A, Zhu G, Jia H, Jin P, Zeng X, Li Y. Dislocation behavior in a polycrystalline mg-y alloy using multi-scale characterization and vpsc simulation. J Mater Sci Technol. 2022;98:87-98. https://doi.org/10.1016/j.jmst.2021.03.087.
  • 20. Lu X, Zhao J, Wang Z, Gan B, Zhao J, Kang G, Zhang X. Crystal plasticity finite element analysis of gradient nanostructured twip steel. Int J Plast. 2020;130:102703. https://doi.org/10.1016/j.ijplas.2020.102703.
  • 21. Zheng J, Ran JQ, Fu MW. Constitutive modeling of multiscale polycrystals considering grain structures and orientations. Int J Mech Sci. 2022;216:106992. https://doi.org/10.1016/j.ijmecsci.2021.106992.
  • 22. Liu YZ, Wan M, Meng B. Multiscale modeling of coupling mechanisms in electrically assisted deformation of ultrathin sheets: an example on a nickel-based superalloy. Int J Mach Tool Manuf. 2021;162:103689. https://doi.org/10.1016/j.ijmachtools.2021.103689.
  • 23. Hamasaki H, Ohno T, Nakano T, Ishimaru E. Modelling of cyclic plasticity and martensitic transformation for type 304 austenitic stainless steel. Int J Mech Sci. 2018;146-147:536-43. https://doi.org/10.1016/j.ijmecsci.2017.12.003.
  • 24. Fu B, Yang WY, Wang YD, Li LF, Sun ZQ, Ren Y. Micromechanical behavior of trip-assisted multiphase steels studied with in situ high-energy x-ray diffraction. Acta Mater. 2014;76:342-54. https://doi.org/10.1016/j.actamat.2014.05.029.
  • 25. Naghizadeh M, Mirzadeh H. Microstructural evolutions during annealing of plastically deformed aisi 304 austenitic stainless steel: martensite reversion, grain refinement, recrystallization, and grain growth. Metall Mater Trans A. 2016;47:4210-6.
  • 26. Michler T, Berreth K, Naumann J, Sattler E. Analysis of martensitic transformation in 304 type stainless steels tensile tested in high pressure hydrogen atmosphere by means of xrd and magnetic induction. Int J Hydrogen Energy. 2012;37:3567-72. https://doi.org/10.1016/j.ijhydene.2011.11.080.
  • 27. Sohrabi MJ, Naghizadeh M, Mirzadeh H. Deformation-induced martensite in austenitic stainless steels: a review. Arch Civ Mech Eng. 2020. https://doi.org/10.1007/s43452-020-00130-1.
  • 28. Wang P, Yin T, Qu S. On the grain size dependent working hardening behaviors of severe plastic deformation processed metals. Scr Mater. 2020;178:171-5. https://doi.org/10.1016/j.scriptamat.2019.11.028.
  • 29. Tamura I, Tomota Y, Ozawa H. Strength of metals and alloys. Aachen,Federal Republic of Germany: Proceedings of the 5th international conference. 1979.
  • 30. Chen Z, Sun Z, Panicaud B. Constitutive modeling of twip/trip steels and numerical simulation of single impact during surface mechanical attrition treatment. Mech Mater. 2018;122:69-75. https://doi.org/10.1016/j.mechmat.2018.04.005.
  • 31. Cohen M. The strengthening of steel. Trans AIME. 1962;224:638-57.
  • 32. Srivastava A, Ghassemi-Armaki H, Sung H, Chen P, Kumar S, Bower AF. Micromechanics of plastic deformation and phase transformation in a three-phase trip-assisted advanced high strength steel: experiments and modeling. J Mech Phys Solids. 2015;78:46-69. https://doi.org/10.1016/j.jmps.2015.01.014.
  • 33. Tang X, Wang B, Huo Y, Ma W, Zhou J, Ji H, Fu X. Unified modeling of flow behavior and microstructure evolution in hot forming of a ni-based superalloy. Mater Sci Eng. 2016;662:54-64. https://doi.org/10.1016/j.msea.2016.03.044.
  • 34. Lu XC, Zhang X, Shi MX, Roters F, Kang GZ, Raabe D. Dislocation mechanism based size-dependent crystal plasticity modeling and simulation of gradient nano-grained copper. Int J Plast. 2019;113:52-73. https://doi.org/10.1016/j.ijplas.2018.09.007.
  • 35. Benzing JT, Liu Y, Zhang X, Luecke WE, Ponge D, Dutta A, Oskay C, Raabe D, Wittig JE. Experimental and numerical study of mechanical properties of multi-phase medium-mn twip-trip steel: influences of strain rate and phase constituents. Acta Mater. 2019;177:250-65. https://doi.org/10.1016/j.actamat.2019.07.036.
  • 36. Keller C, Hug E. Kocks-mecking analysis of the size effects on the mechanical behavior of nickel polycrystals. Int J Plast. 2017;98:106-22. https://doi.org/10.1016/j.ijplas.2017.07.003.
  • 37. Lindgren L, Domkin K, Hansson S. Dislocations, vacancies and solute diffusion in physical based plasticity model for aisi 316l. Mech Mater. 2008;40:907-19. https://doi.org/10.1016/j.mechmat.2008.05.005.
  • 38. Tang XF, Peng LF, Shi SQ, Fu MW. Influence of crystal structure on size dependent deformation behavior and strain heterogeneity in micro-scale deformation. Int J Plast. 2019;118:147-72. https://doi.org/10.1016/j.ijplas.2019.02.004.
  • 39. Wong SL, Madivala M, Prahl U, Roters F, Raabe D. A crystal plasticity model for twinning- and transformation-induced plasticity. Acta Mater. 2016;118:140-51. https://doi.org/10.1016/j.actamat.2016.07.032.
  • 40. Galindo-Nava EI, Rivera-Diaz-Del-Castillo PEJ. A thermodynamic theory for dislocation cell formation and misorientation in metals. Acta Mater. 2012;60:4370-8. https://doi.org/10.1016/j.actamat.2012.05.003.
  • 41. Estrin Y, Vinogradov A. Extreme grain refinement by severe plastic deformation: a wealth of challenging science. Acta Mater. 2013;61:782-817. https://doi.org/10.1016/j.actamat.2012.10.038.
  • 42. Kheiri S, Mirzadeh H, Naghizadeh M. Tailoring the microstructure and mechanical properties of aisi 316l austenitic stainless steel via cold rolling and reversion annealing. Mater Sci Eng. 2019;759:90-6. https://doi.org/10.1016/j.msea.2019.05.028.
  • 43. Eskandari M, Najafizadeh A, Kermanpur A. Effect of strain-induced martensite on the formation of nanocrystalline 316l stainless steel after cold rolling and annealing. Mater Sci Eng. 2009;519:46-50. https://doi.org/10.1016/j.msea.2009.04.038.
  • 44. Bouquerel J, Verbeken K, Decooman B. Microstructure-based model for the static mechanical behaviour of multiphase steels. Acta Mater. 2006;54:1443-56. https://doi.org/10.1016/j.actam at.2005.10.059.
  • 45. Yang X, Wang B, Zhou J, Xiao W, Feng P. Constitutive modeling of softening mechanism and damage for ti-6al-4v alloy and its application in hot tensile simulation process. Arch Civ Mech Eng. 2021. https://doi.org/10.1007/s43452-021-00217-3.
  • 46. Tang XF, Shi SQ, Fu MW. Interactive effect of grain size and crystal structure on deformation behavior in progressive micro-scaled deformation of metallic materials. Int J Mach Tool Manuf. 2020;148:103473. https://doi.org/10.1016/j.ijmachtools.2019.103473.
  • 47. Latypov MI, Shin S, De Cooman BC, Kim HS. Micromechanical finite element analysis of strain partitioning in multiphase medium manganese twip+trip steel. Acta Mater. 2016;108:219-28. https://doi.org/10.1016/j.actamat.2016.02.001.
  • 48. Celada-Casero C, Sietsma J, Santofimia MJ. The role of the austenite grain size in the martensitic transformation in low carbon steels. Mater Design. 2019;167:107625. https://doi.org/10.1016/j.matdes.2019.107625.
  • 49. Kundu A, Field DP, Chandra CP. Effect of strain and strain rate on the development of deformation heterogeneity during tensile deformation of a solution annealed 304 ln austenitic stainless steel: an ebsd study. Mater Sci Eng. 2020;773:138854. https://doi.org/10.1016/j.msea.2019.138854.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ef644fc0-d803-4bd7-8bc3-e6056ea9be22
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.