PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Seismically-induced soft-sediment deformation in crevasse-splay microdelta deposits (Middle Miocene, central Poland)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Crevasse-splay microdelta deposits and their soft-sediment deformation structures (SSDS) are described from a tectonically active lignite-bearing area. These strongly deformed siliciclastic deposits, situated between two lignite benches, are typical of a crevasse-splay microdelta. They accumulated in the overbank zone of a Middle Miocene river system (backswamp area) where shallow ponds or lakes occasionally existed. The deformation takes the form of deformed lamination and load (load casts and flame structures) structures as well as seismic breccias within the first Mid-Polish lignite seam. Ductile deformation structures were generated first by liquefaction and then the breccia was formed under brittle conditions. The brecciation followed a sudden tectonic collapse resulting in an increase in pore pressure related to upward water movement. The occurrence in a tectonic graben and characteristic morphological features suggest an origin of these deformational structures with seismic shocks; thus, they can be called seismites. Hence, we provide strong evidence for accumulation of crevasse-splay sediments in the standing water of a backswamp area, and for tectonic activity in central Poland as the Middle Miocene lignite accumulated.
Rocznik
Strony
162--177
Opis fizyczny
Bibliogr. 88 poz., fot., rys., tab.
Twórcy
  • Adam Mickiewicz University, Institute of Geology, Krygowski 12, 61-680 Poznań, Poland
  • Adam Mickiewicz University, Institute of Geology, Krygowski 12, 61-680 Poznań, Poland
  • Konin Lignite Mine, al. 600-lecia 9, 62-540 Kleczew, Poland
autor
  • Adam Mickiewicz University, Institute of Geology, Krygowski 12, 61-680 Poznań, Poland
  • Adam Mickiewicz University, Institute of Geology, Krygowski 12, 61-680 Poznań, Poland
Bibliografia
  • 1. Alsop, G.I., Marco, S., Levi, T., Weinberger, R., 2017. Fold and thrust systems in Mass Transport Deposits. Journal of Structural Geology, 94: 98-115.
  • 2. Allen, J.R.L., 1982. Sedimentary Structures: Their Character and Physical Basis. Vol. II. Elsevier, New York.
  • 3. Anketell, J.M., Cegła, J., Dżułyński, S., 1970. On the deformational structures in systems with reversed density gradients. Annales Societatis Geologorum Poloniae, 40: 3-30.
  • 4. Basilone, L., Sulli, A., Morticelli, M.G., 2016. The relationships between soft-sediment deformation structures and synsedimentary extensional tectonics in Upper Triassic deep-water carbonate succession (Southern Tethyan rifted continental margin -Central Sicily). Sedimentary Geology, 344: 310-322.
  • 5. Bos, I.J., Feiken, H., Bunnik, F., Schokker, J., 2009. Influence of organics and clastic lake fills on distributary channel processes in the distal Rhine-Meuse delta (The Netherlands). Palaeogeography, Palaeoclimatology, Palaeoecology, 284: 355-374.
  • 6. Bridge, J.S., 2003. Rivers and Floodplains: Forms, Processes, and Sedimentary Record. Blackwell Publishing, Malden.
  • 7. Bristow, C.S., Skelly, R.L., Ethridge, F.G., 1999. Crevasse splays from the rapidly aggrading, sand-bed, braided Niobrara River, Nebraska: effect of base-level rise. Sedimentology, 46: 1029-1047.
  • 8. Burns, C., Mountney, N.P., Hodgson, D.M., Colombera, L., 2017. Anatomy and dimensions of fluvial crevasse-splay deposits: examples from the Cretaceous Castlegate Sandstone and Neslen Formation, Utah, U.S.A. Sedimentary Geology, 351: 21-35.
  • 9. Cahoon, D.R., White, D.A., Lynch, J.C., 2011. Sediment infilling and wetland formation dynamics in an active crevasse splay of the Mississippi River delta. Geomorphology, 131: 57-68.
  • 10. Chiarella, D., Moretti, M., Longhitano, S.G., Muto, F., 2016. Deformed cross-stratified deposits in the Early Pleistocene tidally-dominated Catanzaro strait-fill succession, Calabrian Arc (Southern Italy): triggering mechanisms and environmental significance. Sedimentary Geology, 344: 277-289.
  • 11. Ciarcia, S., Vitale, S., 2013. Sedimentology, stratigraphy and tectonics of evolving wedge-top depozone: Ariano Basin, southern Apennines, Italy. Sedimentary Geology, 290: 27-46.
  • 12. Collinson, J.D., Thompson, D.B., 1982. Sedimentary Structures. Allen and Unwin, London.
  • 13. Davies-Vollum, K.S., Kraus, M.J., 2001. A relationship between alluvial backswamps and avulsion cycles: an example from the Willwood Formation of the Bighorn Basin, Wyoming. Sedimentary Geology, 140: 235-245.
  • 14. Diessel, C., Boyd, R., Wadsworth, J., Leckie, D., Chalmers, G., 2000. On balanced and unbalanced accommodation/peat accumulations ratios in the Cretaceous coals from Gates Formation, Western Canada, and their sequence-stratigraphic significance. International Journal of Coal Geology, 43: 143-186.
  • 15. Dżułyński, S., Walton, E.K., 1965. Sedimentary Features of Flysch and Greywackes. Elsevier, Amsterdam.
  • 16. Farrell, K.M., 2001. Geomorphology, facies architecture, and high-resolution, non-marine sequence stratigraphy in avulsion deposits, Cumberland Marshes, Saskatchewan. Sedimentary Geology, 139: 93-150.
  • 17. Fielding, C.R., 1986. Fluvial channel and overbank deposits from the Westphalian of the Durham coalfield, NE England. Sedimentology, 33: 119-140.
  • 18. Flores, R.M., 1993. Geologic and geomorphic controls of coal development in some Tertiary Rocky Mountain basins, USA. International Journal of Coal Geology, 23: 43-73.
  • 19. Flores, R.M., 2013. Coal and Coalbed Gas: Fueling the Future. Elsevier, Waltman, MA.
  • 20. Gębica, P., Sokołowski, T., 2001. Sedimentological interpretation of crevasse splays formed during the extreme 1997 flood in the upper Vistula river valley (South Poland). Annales Societatis Geologorum Poloniae, 71: 53-62.
  • 21. Gouw, M.J.P., Autin, W.J., 2008. Alluvial architecture of the Holocene Lower Mississippi Valley (U.S.A.) and a comparison with the Rhine-Meuse delta (The Netherlands). Sedimentary Geology, 204: 106-121.
  • 22. Gruszka, B., van Loon, A.J., 2007. Pleistocene glaciolacustrine breccias of seismic origin in an active graben (central Poland). Sedimentary Geology, 193: 93-104.
  • 23. Gruszka, B., Zieliński, T., 1996. Gravity flow origin of glaciolacustrine sediments in a tectonically active basin (Pleistocene, central Poland). Annales Societatis Geologorum Poloniae, 66: 59-81.
  • 24. Guion, P.D., 1984. Crevasse splay deposits and roof-rock quality in the Three Quarters Seam (Carboniferous) in the East Midlands Coalfield, U.K. Sedimentology of Coal and Coal-bearing Sequences. International Association of Sedimentologists, Special Publication, 7: 291-308.
  • 25. Holdgate, G.R., 2005. Geological processes that control lateral and vertical variability in coal seam moisture contents - Latrobe Valley (Gippsland Basin) Australia. International Journal of Coal Geology, 63: 130-155.
  • 26. Holzer, T.M., Clark, M.M., 1993. Sand boils without earthquakes. Geology, 21: 873-876.
  • 27. Horne, J.C., Ferm, J.C., Caruccio, F.T., Baganz, B.P., 1978. Depositional models in coal exploration and mine planning in Appalachian Region. American Association of Petroleum Geologist Bulletin, 62: 2379-2411.
  • 28. Kasiński, J.R., 1986. Sedimentary models of small lignite deposits: examples from the Polish Neogene (in Polish with English summary). Przegląd Geologiczny, 34: 189-197.
  • 29. Kasiński, J.R., 1989. Lacustrine sedimentary sequences in the Polish Miocene lignite-bearing basins - facies distribution and sedimentary development. Palaeogeography, Palaeoclimatology Palaeoecology, 70: 287-304.
  • 30. Kasiński, J.R., Słodkowska, B., 2016. Factors controlling Cenozoic anthracogenesis in the Polish Lowlands. Geological Quarterly, 60 (4): 959-974.
  • 31. Kirschbaum, M.A., McCabe, P.J., 1992. Controls on the formation of coal and on the development of anastomosed fluvial systems in the Cretaceous Dakota Formation of southern Utah. Sedimentology, 39: 581-598.
  • 32. Kwiecińska, B., Wagner, M., 1997. Classification of qualitative features of brown coal from Polish deposits according to petrographical, chemical and technological criteria (in Polish with English summary). Wydawnictwo Centrum PPGSMiE Polskiej Akademii Nauk, Kraków.
  • 33. Mach, K., Sýkorová, I., Konzalová, M., Opluštil, S., 2013. Effect of relative lake-level changes in mire-lake system on the petrographic and floristic compositions of a coal seam, in the Most Basin (Miocene), Czech Republic. International Journal of Coal Geology, 105: 120-136.
  • 34. Markič, M., Sachsenhofer, R.F., 1997. Petrographic composition and depositional environments of the Pliocene Velenje lignite seam (Slovenia). International Journal of Coal Geology, 33: 229-254.
  • 35. Mastej, W., Bartuś, T., Rydlewski, J., 2015. Analysis of facies cyclicity in the Miocene Coal Complex of the Bełchatów lignite deposit, south-central Poland. Geologos, 21: 285-302.
  • 36. McCabe, P.J., 1984. Depositional models of coal and coal-bearing strata. International Association of Sedimentologists, Special Publication, 7: 13-42.
  • 37. Miall, A.D., 1977. A review of the braided-river depositional environment. Earth-Science Reviews, 13: 1-62.
  • 38. Michaelsen, P., Henderson, R.A., Crosdale, P.J., Mikkelsen, S.O., 2000. Facies architecture and depositional dynamics of the Upper Permian rangal coal measures, Bowen Basin, Australia. Journal of Sedimentary Research, 70: 879-895.
  • 39. Moretti, M., Sabato, L., 2007. Recognition of trigger mechanisms for soft-sediment deformation in the Pleistocene lacustrine deposits of the Sant'Arcangelo Basin (southern Italy): seismic shock vs overloading. Sedimentary Geology, 196: 31-45.
  • 40. Moretti, M., van Loon, A.J., 2014. Restrictions to the application of “diagnostic” criteria for recognizing ancient seismites. Journal of Palaeogeography, 3: 162-173.
  • 41. Moretti, M., Alfaro, P., Caselles, O., Canas, J.A., 1999. Modelling seismites with a digital shaking table. Tectonophysics, 304: 369-383.
  • 42. Moretti, M., Owen, G., Tropeano, M., 2011. Soft-sediment deformation induced by sinkhole activity in shallow marine environments: a fossil example in the Apulian Foreland (Southern Italy). Sedimentary Geology, 235: 331-342.
  • 43. Moretti, M., Alfaro, P., Owen, G., 2016. The environmental significance of soft-sediment deformation structures: key signatures for sedimentary and tectonic processes. Sedimentary Geology, 344: 1-4.
  • 44. Obermeier, S.F., Pond, E.C., 1998. Issues in Using Liquefaction Features for Paleoseismic Analysis. United States Geological Survey Open-File Report: 98-28.
  • 45. Obermeier, S.F., Olson, S.M., Green, R.A., 2005. Field occurrences of liquefaction-induced features: a primer for engineering geologic analysis of paleoseismic shaking. Engineering Geology, 76: 209-234.
  • 46. Opluštil, S., 2005. The effect of paleotopography, tectonics and sediment supply on quality of coal seams in continental basins of central and western Bohemia (Westphalian), Czech Republic. International Journal of Coal Geology, 64: 173-203.
  • 47. Owen, G., 1996. Experimental soft-sediment deformation: structures formed by liquefaction of unconsolidated sands and some ancient examples. Sedimentology, 43: 279-293.
  • 48. Owen, G., Moretti, M., 2011. Identifying triggers for liquefaction-induced soft-sediment deformation in sands. Sedimentary Geology, 235: 141-147.
  • 49. Owen, G., Moretti, M., Alfaro, P., 2011. Recognising triggers for soft-sediment deformation: current understanding and future directions. Sedimentary Geology, 235: 133-342.
  • 50. Pérez-Arlucea, M., Smith, N.D., 1999. Depositional patterns following the 1870s avulsion of the Saskatchewan River (Cumberland Marshes, Saskatchewan, Canada). Journal of Sedimentary Research, 69: 62-73.
  • 51. Piwocki, M., Ziembińska-Tworzydło, M., 1997. Neogene of the Polish Lowlands - lithostratigraphy and pollen-spore zones. Geological Quarterly, 41 (1): 21-40.
  • 52. Rajchl, M., Uličný, D., 2005. Depositional record of an avulsive fluvial system controlled by peat compaction (Neogene, Most Basin, Czech Republic). Sedimentology, 52: 601-625.
  • 53. Rajchl, M., Uličný, D., Mach, K., 2008. Interplay between tectonics and compaction in a rift-margin, lacustrine delta system: Miocene of the Eger Graben, Czech Republic. Sedimentology, 55: 1419-1447.
  • 54. Rossetti, D.F., Santos, A.E., 2003. Events of sediment deformation and mass failure in Upper Cretaceous estuarine deposits (Cametá Basin, northern Brazil) as evidence for seismic activity. Sedimentary Geology, 161: 107-130.
  • 55. Schäfer, A., Hilger, D., Gross, G., von der Hocht, F., 1995. Cyclic sedimentation in Tertiary Lower-Rhine Basin (Germany) - the “Liegendrücken” of the brown-coal open-cast Fortuna mine. Sedimentary Geology, 103: 229-247.
  • 56. Seilacher, A., 1969. Fault-graded beds interpreted as seismites. Sedimentology, 13: 15-159.
  • 57. Shukla, M.K., Sharma, A., 2018. A brief review on breccia: it's contrasting origin and diagnostic signatures. Solid Earth Sciences, 3: 50-59.
  • 58. Sims, J.D., 1975. Determining earthquake recurrence intervals from deformational structures in young lacustrine sediments. Tectonophysics, 29: 141-152.
  • 59. Słodkowska, B., Kasiński, J.R., 2016. Paleogene and Neogene - a time of dynamic changes of climate (in Polish with English summary). Przegląd Geologiczny, 64: 15-25.
  • 60. Słomka, T., Doktor, M., Wagner, M., Matl, K., 2000. Sedimentological study of Miocene alluvial fans in the Bełchatów lignite deposit (in Polish with English summary). Prace Geologiczne PAN, 147: 21-46.
  • 61. Smith, N.D., Cross, T.A., Dufficy, J.P., Clough, S.R., 1989. Anatomy of an avulsion. Sedimentology, 36: 1-23.
  • 62. Smith, N.D., Pérez-Arlucea, M., 1994. Fine-grained splay deposition in the avulsion belt of the lower Saskatchewan River, Canada. Journal of Sedimentary Research, B64: 159-168.
  • 63. Spicer, R.A., Ahlberg, A., Herman, A.B., Kelley, S.P., Raikevich, M.I., Rees, P.M., 2002. Palaeoenvironment and ecology of the middle Cretaceous Grebenka flora of northeastern Asia. Palaeogeography, Palaeoclimatology, Palaeoecology, 184: 65-105.
  • 64. Teichmüller, M., 1989. The genesis of coal from the viewpoint of coal petrology. International Journal of Coal Geology, 12:1-87.
  • 65. Teisseyre, A.K., 1985. Recent overbank deposits of the Sudetic valleys, SW Poland. Part I: general environmental characteristics (with examples from the upper River Bóbr drainage basin). Geologia Sudetica, 20: 113-195.
  • 66. Ticleanu, N., Scradeanu, D., Popa, M., Milutinovici, S., Popa, R., Preda, I., Ticleanu, M., Savu, C., Diaconita, D., Barus, T., Petrescu, I., Dinulescu, C., Maftei, R., 1999. The relation between the lithotypes of Pliocene coals from Oltenia and their main quality characteristics. Bulletin of the Czech Geological Survey, 74: 169-174.
  • 67. Toonen, W.H.J., Van Asselen, S., Stouthamer, E., Smith, N.D., 2016. Depositional development of the Muskeg Lake crevasse splay in the Cumberland Marshes (Canada). Earth Surface Processes and Landforms, 41: 117-129.
  • 68. Törő, B., Pratt, B.R., 2016. Sedimentary record of seismic events in the Eocene Green River Formation and its implications for regional tectonics on lake evolution (Bridger Basin, Wyoming). Sedimentary Geology, 344: 175-204.
  • 69. Tye, R.S., Coleman, J.M., 1989. Evolution of Atchafalaya lacustrine deltas, south-central Louisiana. Sedimentary Geology, 65: 95-112.
  • 70. Uličný, D., Rajchl, M., Mach, K., Dvořák, Z., 2000. Sedimentation and synsedimentary deformation in a rift-margin, lacustrine delta system: the Bílina Delta (Miocene), Most Basin. Proceedings of the 5th Meeting of the Czech tectonic Studies Group. Geolines, 10: 84-95.
  • 71. Van Asselen, S., Stouthamer, E., Van Asch, Th.W.J., 2009. Effects of peat compaction on delta evolution: a review on processes, responses, measuring and modeliing. Earth Science Reviews, 92: 35-51.
  • 72. Van Loon, A.J., 2009. Soft-sediment deformation structures in siliciclastic sediments: an overview. Geologos, 15: 3-55.
  • 73. Van Loon, A.J., Brodzikowski, K., Zieliński, T., 1995. Shock-induced resuspension deposits from a Pleistocene proglacial lake (Kleszczów Graben, central Poland). Journal of Sedimentary Research, A65: 417-422.
  • 74. Widera, M., 2007. Lithostratigraphy and palaeotectonics of the Sub-Pleistocene Cenozoic of Wielkopolska (in Polish with English summary). Adam Mickiewicz University Press, Poznań.
  • 75. Widera, M., 2012. Macroscopic lithotype characterisation of the 1st Middle-Polish (1st Lusatian) Lignite Seam in the Miocene of central Poland. Geologos, 18: 1-11.
  • 76. Widera, M., 2013a. Sand- and mud-filled fluvial palaeochannels in the Wielkopolska Member of the Neogene Poznań Formation, central Poland. Annales Societatis Geologorum Poloniae, 83: 19-28.
  • 77. Widera, M., 2013b. Changes of the lignite seam architecture - a case study from Polish lignite deposits. International Journal of Coal Geology, 114: 60-73.
  • 78. Widera, M., 2014. Lignite cleat studies from the first Middle-Polish (first Lusatian) lignite seam in central Poland. International Journal of Coal Geology, 131 : 227-238.
  • 79. Widera, M., 2015. Compaction of lignite: a review of methods and results. Acta Geologica Polonica, 65: 367-368.
  • 80. Widera, M., 2016a. Depositional environments of overbank sedimentation in the lignite-bearing Grey Clays Member: new evidence from Middle Miocene deposits of central Poland. Sedimentary Geology, 335: 150-165.
  • 81. Widera, M., 2016b. An overview of lithotype associations forming the exploited lignite seams in Poland. Geologos, 22: 213-225.
  • 82. Widera, M., 2016c. Characteristics and origin of deformations within the lignite seams - a case study from Polish opencast mines. Geological Quarterly, 60 (1): 181-191.
  • 83. Widera, M., 2017. Sedimentary breccia formed atop a Miocene crevasse-splay succession in central Poland. Sedimentary Geology, 360: 96-104.
  • 84. Widera, M., 2018. Tectonic and glaciotectonic deformations in the areas of Polish lignite deposits. Civil and Environmental Engineering Reports, 28: 182-193.
  • 85. Widera, M., Hałuszczak, A., 2011. Stages of the Cenozoic tectonics in central Poland: examples from selected grabens. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 162: 203-215.
  • 86. Widera, M., Chomiak, L., Gradecki, D., Wachocki, R., 2017a. Crevasse splay deposits from the Miocene of central Poland near Konin (in Polish with English summary). Przegląd Geologiczny, 65: 251-258.
  • 87. Widera, M., Kowalska, E., Fortuna, M., 2017b. A Miocene anastomosing river system in the area of Konin Lignite Mine, central Poland. Annales Societatis Geologorum Poloniae, 87: 157-168.
  • 88. Zieliński, T., 2014. Sedymentologia. Osady rzek i jezior (in Polish). Adam Mickiewicz University Press, Poznań.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ef63f16b-a4cf-4ac1-8583-bed132feeabc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.