PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

High-energy seismic events in Legnica-Głogów Copper District in light of ASG-EUPOS data

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Seismic events in the area of Poland are related mostly to copper and coal mining, and they are regarded as the most dangerous natural hazard. Although development of geomechanical modelling as the development of geophysical methods determining seismic hazard are evident, low predictability of the time-effect relationship still remains. Geomechanical models as geophysical data analysis highlight the interaction between parts of rock mass or allow to reconstruct the way of rock mass destruction and to understand the processes that take place in the high-energy tremors. However, the association of larger mining tremors with pre-existing geological features has been reported by many investigators; in geomechanical practice, investigations of rock mass condition concentrate on this problem in the local scale. Therefore, the problem of relations between high-energy seismic events in Legnica–Głogów Copper District (LGCD) and regional scale deformations of terrain surface resulting from possible tectonic activity is discussed in this paper. The GNSS data evaluated from the observations of ASG-EUPOS (Active Geodetic Network – EUPOS) stations in the area of LGCD and in the adjacent areas is analysed in this study. Temporal variation of distances between the stations and evaluated on that base so called apparent strain was combined with the occurrence of high-energy tremors. Consequently, after the examination and analysis of occurrences of mining tremors, it is found that high-energy seismic events and periods of strain accumulation evaluated from GPS/GNSS data have temporal relations. Although the seismic events were triggered by mining, nearly all the events with energy E > 108 J occurred in the periods when the analysed stations’ positions demonstrated a decrease in the baseline length.
Rocznik
Tom
Strony
25--40
Opis fizyczny
Bibliogr. 44 poz., tab., rys., wykr.
Twórcy
  • Faculty of Mining Surveying and Environmental Engineering, Department of Mining Areas Protection, Geoinformatics and Mining Surveying, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Cracow, Poland
Bibliografia
  • [1] Araszkiewicz A. Bogusz J. Figurski M. Kroszczynski K. and Szafranek K. (2009). Report from 30.06.2009 dealing with precise elaboration of observational data from permanent stations of ASG-EUPOS system. Technical report The Military Technical Academy. Access: http://www.asgeupos.pl/webpg/graph/img/_syst_tests/20090630_WAT-CGS_RaportASG-EUPOS.pdf
  • [2] Araszkiewicz A. Figurski M. and Jarosinski M. (2016). Erroneous GNSS strain rate patterns and their application to investigate the tectonic credibility of GNSS velocities. Acta Geophysica 64(5):1412–1429
  • [3] Bettinelli P. Avouac J.-P. Flouzat M. Jouanne F. Bollinger L. Willis P. and Chitrakar G. R. (2006). Plate motion of India and interseismic strain in the Nepal Himalaya from GPS and DORIS measurements. Journal of Geodesy 80(8-11):567–589
  • [4] Blewitt G. Lavallée D. Clarke P. and Nurutdinov K. (2001). A new global mode of Earth deformation: Seasonal cycle detected. Science 294(5550):2342–2345
  • [5] Bogusz J. Figurski M. Kontny B. and Grzempowski P. (2012). Horizontal velocity field derived from EPN and ASG-EUPOS satellite data on the example of south-western part of Poland. Acta Geodynamica et Geomaterialia 9:349–357.
  • [6] Bogusz J. Kłos A. Grzempowski P. and Kontny B. (2014). Modelling the velocity field in a regular grid in the area of Poland on the basis of the velocities of European permanent stations. Pure and Applied Geophysics 171(6):809–833
  • [7] Bollinger L. Perrier F. Avouac J.-P. Sapkota S. Gautam U. and Tiwari D. (2007). Seasonal modulation of seismicity in the Himalaya of Nepal. Geophysical Research Letters 34(8)
  • [8] Bosy J. Graszka W. and Leonczyk M. (2007). ASG-EUPOS - a multifunctional precise satellite positioning system in Poland. TransNav International Journal on Marine Navigation and Safety od Sea Transportation 1(4):371–374.
  • [9] Brzezinski A. Józwik M. Kaczorowski M. Kalarus M. Kasza D. Kosek W. Nastula J. Szczerbowski Z. Winska M. Wronowski R. Zdunek R. and Zielinski J. B. (2016). Geodynamic research at the Department of Planetary Geodesy SRC PAS. Reports on Geodesy and Geoinformatics 100(1):131–147
  • [10] Cacon S. Bosy J. and Kontny B. (2004). Recent tectonic activity in the Eastern Sudetes and on the Fore-Sudetic Block on the basis of 1993-2003 investigations. Reports on Geodesy 2(69):197–211.
  • [11] Crowell B. W. Bock Y. and Melgar D. (2012). Real-time inversion of GPS data for finite fault modeling and rapid hazard assessment. Geophysical Research Letters 39(9):L09305
  • [12] Dadlez R. Marek S. and Pokorski J. (2000). Geological map of Poland without Cainozoic deposits Panstwowy Instytut Geologiczny.
  • [13] Dong D. Fang P. Bock Y. Cheng M. and Miyazaki S. (2002). Anatomy of apparent seasonal variations from GPS-derived site position time series. Journal of Geophysical Research: Solid Earth 107(B4)
  • [14] Feigl K. L. (2002). Estimating earthquake source parameters from geodetic measurements. In Lee W. H. K. Kanamori H. Jennings P. C. and Kisslinger C. editors International Handbook of Earthquake and Engineering Seismology volume 81A pages 607–620. Elsevier Amsterdam.
  • [15] Figurski M. Szafranek K. Bogusz J. and Kaminski P. (2010). Investigation on stability of mountainous EUPOS sites’ coordinates. Acta Geodynamica et Geomaterialia 7(3):263–274.
  • [16] Grzempowski P. Badura J. Cacon S. Kapłon J. Rohm W. and Przybylski B. (2012). Geodynamics of south-eastern part of the Central European subsidence zone. Acta Geodynamica et Geomaterialia 9(3):167.
  • [17] Grzempowski P. Badura J. Cacon S. and Przybylski B. (2009). Recent vertical movements in the Wroclaw section of the middle Odra fault zone. Acta Geodynamica et Geomaterialia 6(3):339–349.
  • [18] Jarosinski M. (2010). Recent tectonic stress field investigations in Poland: a state of the art. Geological Quarterly 50(3):303–321.
  • [19] Johnson C. W. Fu Y. and Bürgmann R. (2017). Seasonal water storage stress modulation and California seismicity. Science 356(6343):1161–1164
  • [20] Kaczorowski M. and Wojewoda J. (2011). Neotectonic activity interpreted from a long water-tube tiltmeter record at the SRC Geodynamic Laboratory in Ksiaz Central Sudetes SW Poland. Acta Geodyn. Geomater 8(3):249–261
  • [21] Klos A. Bogusz J. Figurski M. and Kosek W. (2015). Irregular variations in GPS time series by probability and noise analysis. Survey review 47(342):163–173
  • [22] Kontny B. (2004). Is the Sudetic Marginal Fault still active? Results of the GPS monitoring 1996–2002. Acta Geodynamica et Geomaterialia 1(3):35–39.
  • [23] Kontny B. and Bogusz J. (2012). Models of vertical movements of the Earth crust surface in the area of Poland derived from leveling and GNSS data. Acta Geodynamica et Geomaterialia 9(3):331–337.
  • [24] Košt’ák B. Mrlina J. Stemberk J. and Chán B. (2011). Tectonic movements monitored in the Bohemian Massif. Journal of Geodynamics 52(1):34–44
  • [25] Lengliné O. Elkhoury J. E. Daniel G. Schmittbuhl J. Toussaint R. Ampuero J.-P. and Bouchon M. (2012). Interplay of seismic and aseismic deformations during earthquake swarms: An experimental approach. Earth and Planetary Science Letters 331–332:215–223
  • [26] Lohman R. B. and McGuire J. J. (2007). Earthquake swarms driven by aseismic creep in the Salton Trough California. Journal of Geophysical Research: Solid Earth 112(B4):B04405
  • [27] Majcherczyk T. and Niedbalski Z. (2017). The impact of multiple seam mining exploitations on seismic activity and state of stress. Studia Geotechnica et Mechanica 39(1):53–62
  • [28] McCafirey R. (2005). Block kinematics of the Pacific-North America plate boundary in the southwestern United States from inversion of GPS seismological and geologic data. Journal of Geophysical Research: Solid Earth 110(B7):B07401
  • [29] Melgar D. Bock Y. and Crowell B. W. (2012). Real-time centroid moment tensor determination for large earthquakes from local and regional displacement records. Geophysical Journal International 188(2):703–718
  • [30] Orlecka-Sikora B. Papadimitriou E. E. and Kwiatek G. (2009). A study of the interaction among mining-induced seismic events in the Legnica-Głogów Copper District Poland. Acta Geophysica 57(2):413–434
  • [31] Pilecka E. (2007). Statistical analysis of the relation between locations of high energy epicenter tremors and lineaments in areas of the Upper Silesian Basin. Gospodarka Surowcami Mineralnymi 23(4):101–109.
  • [32] Pilecka E. (2008). An analysis of lineament directions on satellite images in context of the occurrence of an induced seismicity in the Legnica-Glogow Copper District (LGCD). Gospodarka Surowcami Mineralnymi 24(2):135–146.
  • [33] Popiołek E. Ostrowski J. Czaja J. and Mazur J. (2001). The impact of a strong mining tremor on the subsidence of the area surface in the Legnica-Glogow Copper Area. In The 10th FIG International Symposium on Deformation Measurements Orange California USA pages 77–80.
  • [34] Schenk V. Schenkova Z. and Jechumtálová Z. (2009). Geodynamic pattern of the West Bohemia region based on permanent GPS measurements. Studia Geophysica et Geodaetica 53(3):329–341
  • [35] Sokoła-Szewioła V. (2011). Przebieg zaobserwowanych przemieszczen pionowych terenu górniczego w czasookresie zwiazanym z wystapieniem wstrzasu indukowanego eksploatacja scianowa. Górnictwo i Geologia 6(3):157–168.
  • [36] Stemberk J. Košt’ák B. and Cacon S. (2010). A tectonic pressure pulse and increased geodynamic activity recorded from the long-term monitoring of faults in Europe. Tectonophysics 487(1-4):1–12
  • [37] Szczerbowski Z. (2016). Investigation on reflection of tectonic pattern in ASG EUPOS data in the Sudetes and adjacent areas. Reports on Geodesy and Geoinformatics 102(1):32–51
  • [38] Szczerbowski Z. and Jura J. (2015). Mining induced seismic events and surface deformations monitored by GPS permanent stations. Acta Geodynamica et Geomaterialia 12(3):237– 248
  • [39] Tong X. Smith-Konter B. and Sandwell D. T. (2014). Is there a discrepancy between geological and geodetic slip rates along the San Andreas Fault System? Journal of Geophysical Research: Solid Earth 119(3):2518–2538
  • [40] van Dam T. Wahr J. Milly P. C. D. Shmakin A. B. Blewitt G. Lavallée D. and Larson K. M. (2001). Crustal displacements due to continental water loading. Geophysical Research Letters 28(4):651–654
  • [41] Wanior J. (1983). Method of prognosis of tremors or rock bursts on the base of results of geodetic measurements on the example of mining carried in the protection pillar of Bytom city PhD thesis UST AGH in Krakow.
  • [42] Wdowinski S. Bock Y. Zhang J. Fang P. and Genrich J. (1997). Southern California permanent GPS geodetic array: Spatial filtering of daily positions for estimating coseismic and postseismic displacements induced by the 1992 Landers earthquake. Journal of Geophysical Research: Solid Earth 102(B8):18057–18070
  • [43] Wiejacz P. and Gibowicz S. J. (1997). Source mechanism determined by moment tensor inversion for seismic events at Rudna and Polkowice copper mines in Poland. Acta Geophysica Polonica 45:291–302.
  • [44] Zorychta A. and Burtan Z. (2012). Conditions of fault activation in the area of exploitation. Mining and Geoengineering 36(3):509–519
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ef6075fe-666f-414c-ad75-cabd3efb6d00
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.