Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this article, the authors propose and investigate a new concept of HAPS aerostat design in a modular form, which allows for sequential increasing or decreasing of the total volume, up to the desired size. In its initial form, the aerostat has relatively small dimensions but its central cylindrical part is multi-segmented and can be easily extended. The application of controllable construction couplings enables precise control of the aerostat expansion process and significantly improves its vertical mobility. The paper describes details of telescopic aerostat construction, presents a mathematical model of its vertical motion and investigates numerically two volume control strategies aimed at maximization of operation efficiency and minimization of operation cost. The results obtained reveal the main problems that have to be addressed and the factors that play a key role in design of such telescopic aerostats and control of their vertical mobility.
Rocznik
Tom
Strony
155--168
Opis fizyczny
Bibliogr. 34 poz., rys., wykr.
Twórcy
autor
- Institute of Vehicles, Warsaw University of Technology
autor
- Institute of Fundamental Technological Research, Polish Academy of Sciences
autor
- Institute of Fundamental Technological Research, Polish Academy of Sciences
autor
- Institute of Fundamental Technological Research, Polish Academy of Sciences
Bibliografia
- [1] M. Lee, S. Smith, and S. Androulakakis, “The high altitude lighter-than-air airship efforts at the US Army Space and Missile Defense Command/Army Forces Strategic Command”, Proceedings of the 18th AIAA Lighter-Than-Air Systems Technology Conference, Seattle, (2009).
- [2] K. Eguchi and Y. Yokomaku, “Overview of stratospheric platform airship R&D program in Japan”, 2nd Stratospheric Platform Systems Workshop, (accessed 2015 Dec 04). https//repository.exst.jaxa.jp/dspace/bitstream/a-is/24606/1/nalrp2001003.pdf
- [3] Google Project Loon, (accessed 2016 May 02). https://plus.google.com/+ProjectLoon/posts/HaRocUbUSae
- [4] “Airbus Zephyr S set to break aircraft world endurance record (accessed 30 Oct 2018), https://www.airbus.com/newsroom/press-releases/en/2018/07/Zephyr-S-set-to-break-aircraft-world-endurance-record.html
- [5] “Augur RosAeroSystems, High Altitude Airship Berkut”, (accessed 2018 Jun 26). http://rosaerosystems.com/projects/obj687
- [6] ElectronicsWeekly.Com, “Airship set to become the ultimate eye in the sky”, (accessed 2018 Jun 26). https://www.electronicsweekly.com/news/business/information-technology/airship-set-to-become-the-ultimate-eye-in-the-sky-2011‒08
- [7] “What’s up with Stratobus?” (accessed 2018 Jun 26). https://www.thalesgroup.com/en/worldwide/space/news/whats-stratobus
- [8] Researchgate, HiSentinel80 inflation and systems integration; (accessed 2018 Jun 26). https://www.researchgate.net/figure/HiSentinel80-inflation-and-systems-integration_fig11_268574048
- [9] The Economist, “Airships as satellites”, (accessed 2018 Jun 26). https://www.economist.com/science-andtechnology/2010/05/06/bladder-control
- [10] European Space Agency, “Stratospheric High Altitude Pseudo-Satellites (HAPS) Programme” (accessed 2017 Dec 12), http://www.haps4esa.org/
- [11] L. Liao and I. Pasternak, “A review of airship structural research and development”, Prog Aerosp Sci 45, 83–96 (2009).
- [12] Z. Goraj, A. Frydrychewicz, R. Świtkiewicz, B. Hernik, J. Gadomski, T. Goetzendorf-Grabowski, M. Figat, St. Suchodolski S, and W. Chajec, “High altitude long endurance unmanned aerial vehicle of a new generation – a design challenge for a low cost, reliable and high performance aircraft”, Bull. Pol. Ac.: Tech. 52(3), (2004).
- [13] J. Liu, C. Lu, and L. Xue, “Investigation of airship aeroelasticity using fluid-structure interaction”, Journal of Hydrodynamics 20(2), 164–171 (2008)
- [14] V. Nejati and K. Matsuuchi, “Aerodynamics design and genetic algorithms for optimization of airship bodies”. JSME International Journal, Series B: Fluids and Thermal Engineering 46(4), 610–617 (2003)
- [15] W. An, W. Li, and H. Wang, “Multi-objective optimization design of envelope shape of a certain airship with deviations considered”. Xibei Gongye Daxue Xuebao / Journal of Northwestern Polytechnical University 25(6), 789–793 (2007)
- [16] MB. Tischler, R.F. Ringland, and H.R. Jex, “Heavy-lift airship dynamics”. Journal of Aircraft 20(5), 425–433 (1983).
- [17] Y. Li, M. Nahon, and I. Sharf, “Dynamics modeling of flexible airships”. AIAA paper no. 2007‒2212.
- [18] S. Zhao, D.X. Liu, D. Zhao, G. Wu, S. Yin, and P. Zhou, “Change rules of a stratospheric airship’s envelope shape during ascent process”, Chin. J. Aeronautics 30(2), 752–758 (2017).
- [19] Y.J. Zhao, J. Mueller, and W. Garrard, “Benefits of trajectory optimization in airship flights”. AIAA paper no. 2004‒6527 (2004).
- [20] Z. Zuo, L. Cheng, X. Wang, and K. Sun, “Three Dimensional Path-Following Backstepping Control for An Underactuated Stratospheric Airship”, IEEE Transactions on Aerospace and Electronic Systems, doi: 10.1109/TAES.2018.2873054, 2018.
- [21] E. Kahale, P.C. Garcia, and Y. Bestaoui, “Autonomous Path Tracking of a Kinematic Airship in Presence of Unknown Gust, J Intell Robot Syst 69, 431‒446 (2013).
- [22] J. Mueller, Y. Zhao, and W. Garrard, “Optimal Ascent Trajectories for Stratospheric Airships Using Wind Energy”, Journal of Guidance Control and Dynamics 32, 1232‒1245 (2009).
- [23] W. Yongmei, M. Zhu, Z. Zuo, and Z. Zheng, “Trajectory tracking of a high altitude unmanned airship based on adaptive feedback linearization”. Proceedings of International Conference on Mechatronic Science, Electric Engineering and Computer, MEC 2011. 10.1109/MEC.2011.6025942, 2011.
- [24] P. Herman and W. Adamski, “Non-adaptive velocity tracking controller for a class of vehicles”, Bull. Pol. Ac.: Tech. 65(4), doi: 10.1515/bpasts-2017‒0051 (2017).
- [25] Z. Zheng and L. Sun, “Adaptive sliding mode trajectory tracking control of robotic airships with parametric uncertainty and wind disturbance”, Journal of the Franklin Institute, doi: 355.10.1016/j.jfranklin.2017.11.004 (2017).
- [26] Z. Zheng, L. Liu, and M. Zhu, “Integrated guidance and control path following and dynamic control allocation for a stratospheric airship with redundant control systems”. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering. doi: 230.10.1177/0954410015613738 (2015).
- [27] S. Chen, B. Song, and H. Wang, “Exploring optimum power unit of propulsion system for high altitude airship”. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 229, 301‒311, doi: 10.1177/0954410014531741 (2014).
- [28] J. Gavan, S. Tapuchi, and D. Grace, “Concepts and main applications of high-altitude-platform radio relays”, URSI Radio Science Bulletin 330, 20‒31, doi: 10.23919/URSIRSB.2009.790971 (2009).
- [29] Z. Qi, X. Jing, S. You, “The capacity analysis on a HAPS-CDMA system based on the platform displacement model”. 2nd IEEE InternationalConference on Network Infrastructure and Digital Content, Beijing, doi: 10.1109/ICNIDC.2010.5657922, 2010.
- [30] J. Holnicki-Szulc, R. Faraj, P. Pawłowski, Z. Wołejsza, K. Kaźmierczak, K. Hinc, “Unfolded structure of the stratospheric airship and the method of volume change, in particular of the unfolded structure of the stratospheric airship”, Polish Patent Office, 2016‒12‒13 – Application number: P-419786, 2016 (in Polish).
- [31] A. Mróz, J. Holnicki-Szulc, J. Biczyk, “Prestress Accumulation-Release Technique for Damping of Impact-Born Vibrations: Application to Self-Deployable Structures”, Hindawi Publishing Corporation, Mathematical Problems in Engineering, Article ID 720236, 2016.
- [32] T. Hojo, “Control of flow around a circular cylinder using a patterned surface”. In. WIT Transactions on Modelling and Simulation 59, Computational Methods and Experimental Measurements XVII Conference, 5 – 7 May 2015, Opatija, Croatia, 2015.
- [33] National Aeronautics and Space Administration. Earth Atmosphere Model; (accessed 2017 Dec 12), https://www.grc.nasa.gov/www/k-12/airplane/atmosmet.html
- [34] C. Graczykowski, “Mathematical models and numerical methods for the simulation of adaptive inflatable structures for impact absorption”, Computers and Structures 174, 3‒20, doi:10.1016/j.compstruc.2015.06.017 (2016).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ef59955e-db03-48d2-8147-43cf489cd7d9