PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analyzing the role of computer science in shaping modern economic and management practices. Bibliometric analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The application of computer science in management and economics is a rapidly growing field that combines the analytical and technological capabilities of computer science with the strategic and operational needs of management and economics. The main aim of this research paper is to analyze the main academic contributors, sources, and international collaborations from 2014 to 2022 in computer science in the areas of management and economics, as well as to analyze the main subtopics developed over time. Bibliometric techniques were used to carry out the literature review, which allows an objective analysis of the academic literature through quantitative indicators. The results reveal a significant shift towards data-driven decision making in management, with artificial intelligence and machine learning improving predictive analytics, operational efficiency, and economic forecasting and modeling, highlighting the essential role of digital transformation in these disciplines, with significant implications for researchers, practitioners and decision-makers. It concludes that all stakeholders should work to develop a more informed and innovative approach to maximize the exploitation of the potential offered by computational sciences in different contexts. This includes the integration of advanced computational tools to improve decision making and operational efficiency, or the exploitation of computational models for more effective forecasting and policy decision making, as well as the continuous analysis of emerging areas in this field, being aware of the ethical, privacy and security challenges presented by these technologies, in order to ensure a responsible and equitable application.
Rocznik
Strony
189--207
Opis fizyczny
Bibliogr. 53 poz., fig., tab.
Twórcy
  • University of Alicante, Faculty of Economic and Business Sciences, Department of Business Organization, Spain
  • Bakrie University of Alicante, Faculty of Economic and Business Sciences, Department of Business Organization, Spain
  • University of Alicante, Faculty of Economic and Business Sciences, Department of Business Organization, Spain
  • Lublin University of Technology, Faculty of Management, Department of Business Organization, Poland
Bibliografia
  • [1] Abdurakhimovich, U. A. (2023). The vital role of web programming in the digital age. Journal of Science-Innovative Research in Uzbekistan, 1(6), 42-51. https://doi.org/10.5281/zenodo.8351718
  • [2] Aggarwal, K., Mijwil, M. M., Al-Mistarehi, A. H., Alomari, S., Gök, M., Alaabdin, A. M. Z., & Abdulrhman, S. H. (2022). Has the future started? The current growth of artificial intelligence, machine learning, and deep learning. Iraqi Journal for Computer Science and Mathematics, 3(1), 115-123. https://doi.org/10.52866/IJCSM.2022.01.01.013
  • [3] Akter, S., McCarthy, G., Sajib, S., Michael, K., Dwivedi, Y. K., D’Ambra, J., & Shen, K. N. (2021). Algorithmic bias in data-driven innovation in the age of AI. International Journal of Information Management, 60, 102387. https://doi.org/10.1016/j.ijinfomgt.2021.102387
  • [4] Almeida, F., Santos, J. D., & Monteiro, J. A. (2020). The challenges and opportunities in the digitalization of companies in a post-COVID-19 World. IEEE, 48(3), 97-103. http://doi.org/10.1109/EMR.2020.3013206
  • [5] Ardern, C. L., Büttner, F., Andrade, R., Weir, A., Ashe, M. C., Holden, S., Impellizzeri, F. M., Delahunt, E., Dijkstra, H. P., Mathieson, S., Rathleff, M. S., Reurink, G., Sherrington, C., Stamatakis, E., Vicenzino, B., Whittaker, J. L., Wright, A. A., Clarke, M., Moher, D., … Winters, M. (2022). Implementing the 27 PRISMA 2020 Statement items for systematic reviews in the sport and exercise medicine, musculoskeletal rehabilitation and sports science fields: The PERSiST (implementing Prisma in Exercise, Rehabilitation, Sport medicine and SporTs science) guidance. British Journal of Sports Medicine, 56(4), 175–195. https://doi.org/10.1136/bjsports-2021-103987
  • [6] Borgholthaus, C. J., White, J. V., & Harms, P. D. (2023). CEO dark personality: A critical review, bibliometric analysis, and research agenda. Personality and Individual Differences, 201, 111951. http://doi.org/10.1016/j.paid.2022.111951
  • [7] Boyadzhieva, Z., Nielsen, S. M., Buttgereit, F., Christensen, R., & Palmowski, A. (2023). Optimizing the reporting and conduct of systematic literature reviews and meta-analyses. Zeitschrift für Rheumatologie, 82(2), 175-176. http://doi.org/10.1007/s00393-023-01329-2
  • [8] Brauner, P., Dalibor, M., Jarke, M., Kunze, I., Koren, I., Lakemeyer, G., Liebenberg, M., Michael, J., Pennekamp, J., Quix, C., Rumpe, B., Van Der Aalst, W., Wehrle, K., Wortmann, A., & Ziefle, M. (2022). A computer science perspective on digital transformation in production. ACM Transactions on Internet of Things, 3(2), 1–32. https://doi.org/10.1145/3502265
  • [9] Brem, A., Giones, F., & Werle, M. (2021). The AI digital revolution in innovation: A conceptual framework of artificial intelligence technologies for the management of innovation. IEEE, 70(2), 770-776. http://doi.org/10.1109/tem.2021.3109983
  • [10] Carbonell-Alcocer, A., Romero-Luis, J., Gertrudix, M., & Wuebben, D. (2023). Datasets on the assessment of the scientific publication's corpora in circular economy and bioenergy approached from education and communication. Data in Brief, 47, 108958. http://doi.org/10.1016/j.dib.2023.108958
  • [11] Dima, A., Bugheanu, A. M., Boghian, R., & Madsen, D. Ø. (2022). Mapping knowledge area analysis in E-Learning systems based on cloud computing. Electronics, 12(1), 62. http://doi.org/10.3390/electronics12010062
  • [12] Ellegaard, O., & Wallin, J. A. (2015). The bibliometric analysis of scholarly production: How great is the impact?. Scientometrics, 105, 1809-1831. https://doi.org/10.1007/s11192-015-1645-z
  • [13] Ellis, L. A., Churruca, K., Clay-Williams, R., Pomare, C., Austin, E. E., Long, J. C., Grødahl, A., & Braithwaite, J. (2019). Patterns of resilience: a scoping review and bibliometric analysis of resilient health care. Safety Science, 118, 241-257. https://doi.org/10.1016/j.ssci.2019.04.044
  • [14] Ferguson-Cradler, G. (2023). Narrative and computational text analysis in business and economic history. Scandinavian Economic History Review, 71(2), 103-127. http://doi.org/10.1080/03585522.2021.1984299
  • [15] García-Lillo, F., Seva-Larrosa, P., & Sánchez-García, E. (2023). What is going on in entrepreneurship research? A bibliometric and SNA analysis. Journal of Business Research, 158, 113624. http://doi.org/10.1016/j.jbusres.2022.113624
  • [16] Gregory, R. W., Henfridsson, O., Kaganer, E., & Kyriakou, H. (2021). The role of artificial intelligence and data network effects for creating user value. Academy of management review, 46(3), 534-551. http://doi.org/10.5465/amr.2019.0178
  • [17] Gupta, M., Parvathy, Givi, J., Dey, M., Kent Baker, H., & Das, G. (2023). A bibliometric analysis on gift giving. Psychology & Marketing, 40(4), 629-642. http://doi.org/10.1002/mar.21785
  • [18] Innocenti, T., Feller, D., Giagio, S., Salvioli, S., Minnucci, S., Brindisino, F., Cosentino, C., Piano, L., Chiarotto, A., & Ostelo, R. (2022). Adherence to the PRISMA statement and its association with risk of bias in systematic reviews published in rehabilitation journals: A meta-research study. Brazilian Journal of Physical Therapy, 26(5), 100450. https://doi.org/10.1016/j.bjpt.2022.100450
  • [19] Kalamara, E., Turrell, A., Redl, C., Kapetanios, G., & Kapadia, S. (2022). Making text count: Economic forecasting using newspaper text. Journal of Applied Econometrics, 37(5), 896-919. http://doi.org/10.1002/jae.2907
  • [20] Karimjanova, R. M., & Soliyeva, G. A. (2022). The role and importance of marketing research in the modernization of the economy of the republic. European journal of innovation in nonformal education, 2(1), 220-224.
  • [21] Katsamakas, E., & Sanchez-Cartas, J. M. (2023). A computational model of the competitive effects of ESG. Plos one, 18(7), e0284237. http://doi.org/10.1371/journal.pone.0284237
  • [22] Khan, W. Z., Rehman, M. H., Zangoti, H. M., Afzal, M. K., Armi, N., & Salah, K. (2020). Industrial internet of things: Recent advances, enabling technologies and open challenges. Computers & Electrical Engineering, 81, 106522. http://doi.org/10.1016/j.compeleceng.2019.106522
  • [23] Kuroki, M. (2023). Integrating data science into an econometrics course with a Kaggle competition. The Journal of Economic Education, 54(4), 364-378. http://doi.org/10.1080/00220485.2023.2220695
  • [24] Lee, C. S., Cheang, P. Y. S., & Moslehpour, M. (2022). Predictive analytics in business analytics: decision tree. Advances in Decision Sciences, 26(1), 1-29. https://doi.org/10.47654/v26y2022i1p1-30
  • [25] Marco-Lajara, B., Martínez-Falcó, J., Millan-Tudela, L. A., & Sánchez-García, E. (2023b). Analysis of the structure of scientific knowledge on wine tourism: A bibliometric analysis. Heliyon, 9(2), e13363. http://doi.org/10.1016/j.heliyon.2023.e13363
  • [26] Marco-Lajara, B., Martínez-Falcó, J., Sánchez-García, E., & Millan-Tudela, L. A. (2023a). Analyzing the role of renewable energy in meeting the sustainable development goals: A bibliometric analysis. Energies, 16(7), 3137. http://doi.org/10.3390/en16073137
  • [27] Martínez-Falcó, J., Marco-Lajara, B., Sánchez-García, E., & Millan-Tudela, L. A. (2023b). Happiness management in the corporate domain: A bibliometric analysis. In J. Martínez-Falcó, B. Marco-Lajara, E. Sánchez-García, & L. A. Millan-Tudela (Eds.), Advances in Logistics, Operations, and Management Science (pp. 86–104). IGI Global. https://doi.org/10.4018/978-1-6684-9261-1.ch005
  • [28] Martínez-Falcó, J., Marco-Lajara, B., Sánchez-García, E., & Visser, G. (2023a). Aligning the sustainable development goals in the wine industry: A Bibliometric Analysis. Sustainability, 15(10), 8172. http://doi.org/10.3390/su15108172
  • [29] Migliavacca, M., Patel, R., Paltrinieri, A., & Goodell, J. W. (2022). Mapping impact investing: A bibliometric analysis. Journal of International Financial Markets, Institutions and Money, 81, 101679. http://doi.org/10.1016/j.intfin.2022.101679
  • [30] Milosz, E., & Milosz, M. (2014). Small computer enterprise on competitive market - decision simulation game for business training of computer science specialist. 7th International Conference of Education, Research and Innovation (ICERI2014) (pp. 1831-1838). IATED.
  • [31] Milosz, M., & Kozhanova, A. (2016). Building dynamic models of technical-economic systems using Causal Diagrams. 10th International Technology, Education and Development Conference (INTED2016) (pp. 6152-6160). IATED. http://doi.org/10.21125/inted.2016.0464
  • [32] Milosz, M., & Lukasik, E. (2015). Reengineering of computer science curriculum according to technology changes and market needs. 2015 IEEE Global Engineering Education Conference (EDUCON) (pp. 689-693). IEEE. http://doi.org/10.1109/educon.2015.7096044
  • [33] Monaghan, S., Tippmann, E., & Coviello, N. (2020). Born digitals: Thoughts on their internationalization and a research agenda. Journal of International Business Studies, 51, 11-22. http://doi.org/10.1057/s41267-019-00290-0
  • [34] Montalvo-Falcón, J. V., Sánchez-García, E., Marco-Lajara, B., & Martínez-Falcó, J. (2023). Sustainability research in the wine industry: A Bibliometric Approach. Agronomy, 13(3), 871. http://doi.org/10.3390/agronomy13030871
  • [35] Nazer, L. H., Zatarah, R., Waldrip, S., Ke, J. X. C., Moukheiber, M., Khanna, A. K., Hicklen, R. S., Moukheiber, L., Moukheiber, D., Ma, H., & Mathur, P. (2023). Bias in artificial intelligence algorithms and recommendations for mitigation. PLOS Digital Health, 2(6), e0000278. http://doi.org/10.1371/journal.pdig.0000278
  • [36] Ni, L., Bausch, G., & Benjamin, R. (2023). Computer science teacher professional development and professional learning communities: A review of the research literature. Computer Science Education, 33(1), 29-60. http://doi.org/10.1080/08993408.2021.1993666
  • [37] Nojeem, L., Shun, M., Embouma, M., Inokon, A., & Browndi, I. (2023). Customer relationship management and algebraic multigrid: An analysis of integration and performance. International Journal of Basic and Applied Sciences, 10(2), 129-135.
  • [38] Popescu, D. V., Dima, A., Radu, E., Dobrotă, E. M., & Dumitrache, V. M. (2022). Bibliometric analysis of the green deal policies in the food chain. Amfiteatru Economic, 24(60), 410-428. http://doi.org/10.24818/ea/2022/60/410
  • [39] Sadeeq, M. M., Abdulkareem, N. M., Zeebaree, S. R., Ahmed, D. M., Sami, A. S., & Zebari, R. R. (2021). IoT and Cloud computing issues, challenges and opportunities: A review. Qubahan Academic Journal, 1(2), 1-7. http://doi.org/10.48161/qaj.v1n2a36
  • [40] Sánchez-García, E., Martínez-Falcó, J., Marco-Lajara, B., & Manresa-Marhuenda, E. (2024). Revolutionizing the circular economy through new technologies: A new era of sustainable progress. Environmental Technology & Innovation, 33, 103509. https://doi.org/10.1016/j.eti.2023.103509
  • [41] Sánchez-García, E., Martínez-Falcó, J., Marco-Lajara, B., & Millán-Tudela, L. A. (2023). Looking into literature in the field of circular supply chain and the subtopic from a customers’ perspective: A bibliometric approach. Journal of Cleaner Production, 417, 137900. http://doi.org/10.1016/j.jclepro.2023.137900
  • [42] Sarker, I. H. (2021). Data science and analytics: an overview from data-driven smart computing, decision-making and applications perspective. SN Computer Science, 2, 377. http://doi.org/10.1007/s42979-021-00765-8
  • [43] Sarker, I. H. (2022). Ai-based modeling: Techniques, applications and research issues towards automation, intelligent and smart systems. SN Computer Science, 3, 158. http://doi.org/10.1007/s42979-022-01043-x
  • [44] Schubert, V., Kuehner, S., Krauss, T., Trat, M., & Bender, J. (2023). Towards a B2B integration framework for smart services in Industry 4.0. Procedia Computer Science, 217, 1649-1659. http://doi.org/10.1016/j.procs.2022.12.365
  • [45] Sezgin, A., Orbay, K., & Orbay, M. (2022). Educational research review from diverse perspectives: A bibliometric analysis of Web of Science (2011–2020). SAGE Open, 12(4). http://doi.org/10.1177/21582440221141628
  • [46] Sharma, R., Shishodia, A., Gunasekaran, A., Min, H., & Munim, Z. H. (2022). The role of artificial intelligence in supply chain management: mapping the territory. International Journal of Production Research, 60(24), 7527-7550. http://doi.org/10.1080/00207543.2022.2029611
  • [47] Shin, D., & Park, Y. J. (2019). Role of fairness, accountability, and transparency in algorithmic affordance. Computers in Human Behavior, 98, 277-284. http://doi.org/10.1016/j.chb.2019.04.019
  • [48] Squazzoni, F., Polhill, J. G., Edmonds, B., Ahrweiler, P., Antosz, P., Scholz, G., Chapping, É., Borith, M., Verhageni, H., Giardinij, F., & Gilbert, N. (2020). Computational models that matter during a global pandemic outbreak: A call to action. Journal of Artificial Societies and Social Simulation, 23(2), 10. http://doi.org/10.18564/jasss.4298
  • [49] Telukdarie, A., Dube, T., Matjuta, P., & Philbin, S. (2023). The opportunities and challenges of digitalization for SME's. Procedia Computer Science, 217, 689-698. https://doi.org/10.1016/j.procs.2022.12.265
  • [50] Weber, P., Carl, K. V., & Hinz, O. (2023). Applications of explainable artificial intelligence in finance - a systematic review of finance, information systems, and computer science literature. Management Review Quarterly. https://doi.org/10.1007/s11301-023-00320-0
  • [51] Castro Arteaga, M., Workentin, M., Alamgir, A. K. M., & Kupka, C. F. (2022). PRISMA statement and Cochrane reviews. http://doi.org/10.13140/RG.2.2.13610.29121
  • [52] Zhao, C., Wu, M., Liu, J., Duan, Z., Li, J., Shen, L., Shangguan, X., Liu, D., & Wang, Y. (2023a). Progress and prospects of data-driven stock price forecasting research. International Journal of Cognitive Computing in Engineering, 4, 100–108. https://doi.org/10.1016/j.ijcce.2023.03.001
  • [53] Zhao, L., Yang, M. M., Wang, Z., & Michelson, G. (2023b). Trends in the dynamic evolution of corporate social responsibility and leadership: A literature review and bibliometric analysis. Journal of Business Ethics, 182, 135-157. http://doi.org/10.1007/s10551-022-05035-y
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ef56f358-2303-479b-abf6-51d310b15ab5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.