PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Strategies for the viability of rechargeable lithium-sulfur batteries

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Lithium-sulfur (Li-S) batteries are considered as one of the most promising next-generation rechargeable batteries for electrical energy storage because of their high theoretical specific energy of ~ 2500 Wh kg-1, low production cost, and high abundance of sulfur. However, the high charge-storage capacity of sulfur cannot be effectively utilized due to the insulating nature of the active material and the easy migration of polysulfide intermediates from the cathode to the anode. In this research article, we describe a concise summary of two successful methods for solving the scientific problems and improving the Li-S cell performances. Design/methodology/approach: Successful strategies in addressing the scientific and engineering issues of Li-S cells can be divided into two major categories: (i) sulfur-based nanocomposites that improve the Li-S cell performance based on the cathode active material and (ii) cell configuration modifications that enhance the Li-S cell performance by adopting the materials nature of sulfur. Findings: Current technologies including nanocomposite development and cell configuration design have greatly ameliorated the overall electrochemical performance of Li-S batteries by improving the electrochemical utilization of sulfur and the retention rate of polysulfides. Research limitations/implications: The overcome the challenges of Li-S batteries, a fair balance has to be taken between (i) sulfur loading/content and cell performances, (ii) amount of active material and porosity of the matrix, and (iii) added weight from the modified cell components and energy density of the custom Li-S cells. Practical implications: The next step for the reality of commercial Li-S batteries might be (i) development of high-loading sulfur cathodes, (ii) anode configuration modification, and (iii) design of electrochemically stable electrolytes. Originality/value: A concise introduction of the development of the sulfur core in Li-S cells is provided.
Rocznik
Strony
70--81
Opis fizyczny
Bibliogr. 100 poz.
Twórcy
autor
  • Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
autor
  • Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
autor
  • Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
Bibliografia
  • [1] A. Manthiram, Materials challenges and opportunities of lithium ion batteries, the Journal of Physical Chemistry Letters 2 (2011) 176-184.
  • [2] X. Fang, H. Peng, A revolution in electrodes: recent progress in rechargeable lithium-sulfur batteries, Small 11 (2015) 1488-1511.
  • [3] A. Manthiram, Y. Fu, Y.-S. Su, Challenges and prospects of lithium-sulfur batteries, Accounts of Chemical Research 46 (2013) 1125-1134.
  • [4] A. Manthiram, Y. Fu, S.-H. Chung, Y.-S. Su, Rechargeable lithium-sulfur batteries, Chemical Reviews 114 (2014) 11751-11787.
  • [5] A. Manthiram, S.-H. Chung, C. Zu, Lithium-sulfur batteries: progress and prospects, Advanced Materials 27 (2015) 1980-2006.
  • [6] C.-H. Chang, S.-H. Chung, A. Manthiram, Ultralightweight PANiNF/MWCNT-functionalized separators with synergistic suppression of polysulfide migration for Li-S batteries with pure sulfur cathodes, Journal of Materials Chemistry A 3 (2015) 18829- 18834.
  • [7] Z. Wang, Y. Dong, H. Li, Z. Zhao, H.B. Wu, C. Hao, S. Liu, J. Qiu, X.W. Lou, Enhancing lithium-sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide, Nature Communications 5 (2015) 5002.
  • [8] P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.M. Tarascon, Li-O2 and Li-S batteries with high energy storage, Nature Materials 11 (2012) 19-29.
  • [9] R. Xu, K. Amine, Progress in mechanistic understanding and characterization techniques of Li-S batteries, Advanced Energy Materials 5 (2015) 408.
  • [10] M.A. Pope, I.A. Aksay, Structural design of cathodes for Li-S batteries, Advanced Energy Materials 5 (2015) 124.
  • [11] R. Cao, W. Xu, D. Lv, J. Xiao, J.G. Zhang, Anodes for rechargeable lithium-sulfur batteries, Advanced Energy Materials 5 (2015) 2273.
  • [12] S.S. Zhang, Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions, Journal of Power Sources 231 (2013) 153-162.
  • [13] J.G. Wang, K. Xie, B. Wei, Advanced engineering of nanostructured carbons for lithium–sulfur batteries, Nano Energy 15 (2105) 413-444.
  • [14] X. Ji, K.T. Lee, L.F. Nazar, A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries, Nature Materials 8 (2009) 500-506.
  • [15] M. Yu, R. Li, M. Wu, G. Shi, Graphene materials for lithium-sulfur batteries, Energy Storage Materials (2015).
  • [16] J. Liu, N.P. Wickramaratne, S.Z. Qiao, M. Jaroniec, Molecular-based design and emerging applications of nanoporous carbon spheres, Nature Materials 14 (2015) 763-774.
  • [17] X.B. Cheng, J.Q. Huang, Q. Zhang, H.-J. Peng, M.Q. Zhao, F. Wei, Aligned carbon nanotube/sulfur composite cathodes with high sulfur content for lithium–sulfur batteries, Nano Energy 4 (2014) 65-72.
  • [18] Z. Yang, J. Ren, Z. Zhang, X. Chen, G. Guan, L. Qiu, Y. Zhang, H. Peng, Recent advancement of nanostructured carbon for energy applications, Chemical Reviews 115 (2015) 5159-5223.
  • [19] B. Zhang, X. Qin, G.R. Li, X.P. Gao, Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres, Energy & Environmental Science 3 (2010) 1531-1537.
  • [20] X. Li, Y. Cao, W. Qi, L.V. Saraf, J. Xiao, Z. Nie, J. Mietek, J.G. Zhang, B. Schwenzera, J. Liu, Optimization of mesoporous carbon structures for lithiumsulfur battery applications, Journal of Materials Chemistry 21 (2011) 16603-16610.
  • [21] J.L. Wang, J. Yang, J.Y. Xie, N.X. Su, Y. Li, Sulfurcarbon nano-composite as cathode for rechargeable lithium battery based on gel electrolyte, Electrochemistry Communications 4 (2002) 499-502.
  • [22] J. Song, M.L. Gordin, T. Xu, S.R. Chen, Z. Yu, H. Sohn, Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium–sulfur battery cathodes, Angewandte Chemie International Edition 54 (2015) 4325-4329.
  • [23] P. Strubel, S. Thieme, T. Biemelt, A. Helmer, M. Oschatz, J. Brückner, H. Althues, S. Kaskel, Hard templating for synthesis of hierarchical porous carbons with tailored porosity and high performance in lithium-sulfur battery, Advanced Functional Materials 25 (2015) 287-297.
  • [24] X. Yang, N. Yan, W. Zhou, H. Zhang, X. Li, H. Zhang, Sulfur embedded in one-dimensional French fries-like hierarchical porous carbon derived from a metal-organic framework for high performance lithium-sulfur batteries, Journal of Materials Chemistry A 3 (2015) 15314-15323.
  • [25] Z. Li, J. Zhang, X.W. Lou, Hollow carbon nanofibers filled with MnO2 nanosheets as efficient sulfur hosts for lithium-sulfur batteries, Angewandte Chemie International Edition (2015).
  • [26] L. Qie, A. Manthiram, A facile layer-by-layer approach for high-areal-capacity sulfur cathodes, Advanced Materials 27 (2015) 1694-1700.
  • [27] R. Singhal, S.H. Chung, A. Manthiram, V. Kalra, A free-standing carbon nanofiber interlayer for high-performance lithium-sulfur batteries, Journal of Materials Chemistry A 3 (2015) 4530-4538.
  • 28] S.H. Chung, A. Manthiram, A hierarchical carbonized paper with controllable thickness as a modulable interlayer system for high performance Li-S batteries, Chemical Communications 50 (2014) 4184-4187.
  • [29] S.H. Chung, A. Manthiram, A polyethylene glycolsupported microporous carbon coating as a polysulfide trap for utilizing pure sulfur cathodes in lithium-sulfur batteries, Advanced Materials 26 (2015) 7352-7357.
  • [30] S.H. Chung, A. Manthiram, A bifunctional separator with a light-weight carbon-coating for dynamically and statically stable lithium-sulfur batteries, Advanced Functional Materials 24 (2014) 5299-5306.
  • [31] S.H. Chung, P. Han, R. Sinfhal, V. Kalra, A. Manthiram, Electrochemically stable rechargeable lithiumsulfur batteries with a microporous carbon nanofiber filter for polysulfide, Advanced Energy Materials (2015). DOI: 10.1002/aenm.201500738
  • [32] Y.S. Su, Y. Fu, B. Guo, S. Dai, A. Manthiram, Fast, reversible lithium storage with a sulfur/long-chainpolysulfide redox couple, Chemistry - a European Journal 19 (2013) 8621-8626.
  • [33] Y. Fu, Y.-S. Su, A. Manthiram, Highly Reversible lithium/dissolved polysulfide batteries with carbon nanotube electrodes, Angewandte Chemie International Edition 52 (2013) 6930-6935.
  • [34] S.H. Chung, A. Manthiram, A. high-performance Li-S batteries with an ultra-lightweight MWCNT-coated separator, Journal of Physical Chemistry Letters 5 (2014) 1978-1983.
  • [35] Y.S. Su, A. Manthiram, Lithium-sulphur batteries with a microporous carbon paper as a bifunctional interlayer, Nature Communications 3 (2012) 1166.
  • [36] S.H. Chung, R. Sinfhal, V. Kalra, A. Manthiram, A porous carbon mat as an electrochemical testing platform for investigating the polysulfide retention of various cathode configurations in Li-S cells, Journal of Physical Chemistry Letters 6 (2015) 2163-2169.
  • [37] S.H. Chung, A. Manthiram, Eggshell membranederived polysulfide absorbents for highly stable and reversible lithium–sulfur cells, ACS Sustainable Chemistry & Engineering 2 (10) 2248-2252.
  • [38] Y.S. Su, Y. Fu, A. Manthiram, Self-weaving sulfurcarbon composite cathodes for high rate lithium-sulfur batteries, Physical Chemistry Chemical Physics 14 (2012) 14495-14499.
  • [39] F. Wu, Li. Shi, D. Mu, H. Xu, B. Wu, A hierarchical carbon fiber/sulfur composite as cathode material for Li-S batteries, Carbon 86 (2015) 146-155.
  • [40] S. Moon, Y.H. Jung, W.K. Jung, D.S. Jung, J.W. Choi, D.K. Kim, Encapsulated monoclinic sulfur for stable cycling of Li-S rechargeable batteries, Advanced Materials 25 (2013) 6547-6553.
  • [41] C. Liang, N.J. Dudney, J.Y. Howe, Hierarchically structured sulfur/carbon nanocomposite material for high-energy lithium battery, Chemistry of Materials 21 (2009) 4724-4730. [42] Y.X. Yin, S. Xin, Y.G. Guo, L.J. Wan, Lithium-sulfur batteries: electrochemistry, materials, and prospects, Angewandte Chemie International Edition 52 (2013) 13186-13200.
  • [43] W. Zheng, Y.W. Liu, X.G. Hu, C.F. Zhang, Novel nanosized adsorbing sulfur composite cathode materials for the advanced secondary lithium batteries, Electrochimica Acta 51 (2006) 1330-1335.
  • [44] L. Ji, M. Rao, S. Aloni, L. Wang, E. J. Cairn, Y. Zhang, Porous carbon nanofiber-sulfur composite electrodes for lithium/sulfur cells, Energy & Environmental Science 4 (2011) 5053-5059.
  • [45] S. Xin, L. Gu, N.-H. Zhao, Y.-X. Yin, L.-J. Zhou, Y-G. Guo, L.-J. Wan, Smaller sulfur molecules promise better lithium–sulfur batteries, Journal of the American Chemical Society 134 (2012) 18510-15813.
  • [46] J. Guo, Y. Xu, C. Wang, Sulfur-impregnated disordered carbon nanotubes cathode for lithium–sulfur batteries, Nano Letter 11 (2011) 4288-4294.
  • [47] N. Jayaprakash, J. Shen, S.S. Moganty, A. Corona, L.A. Archer, Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries, Angewandte Chemie International Edition 50 (2011) 5904- 5908.
  • [48] J. Wang, J. Wang, J. Xie, N. Xu, A novel conductive polymer–sulfur composite cathode material for rechargeable lithium batteries, Advanced Materials 14 (2002) 963-965.
  • [49] J. Fanous, M. Wegner, J. Grimminger, Ä. Andresen, M.R. Buchmeiser, Structure-related electrochemistry of sulfur-poly(acrylonitrile) composite cathode materials for rechargeable lithium batteries, Chemistry of Materials 23 (2011) 5024-5028.
  • [50] L. Wang, X. He, J. Li, J. Gao, J. Guo, C. Jiang, C. Wan, Analysis of the synthesis process of sulphurpoly(acrylonitrile)-based cathode materials for lithium batteries, Journal of Materials Chemistry 22 (2012) 22077-22081.
  • [51] L. Yin, J. Wang, F. Lin, J. Yang, Y. Nuli, Polyacrylonitrile/graphene composite as a precursor to a sulfur-based cathode material for high-rate rechargeable Li-S batteries, Energy & Environmental Science 5 (2012) 6966-6972.
  • [52] J. Wang, J. Chen, K. Konstantinov, L. Zhao, S.H. Ng, G.X. Wang, Z.P. Guo, H.K. Liu, Sulphur-polypyrrole composite positive electrode materials for rechargeable lithium batteries, Electrochimica Acta 51 (2006) 4634-4638.
  • [53] M. Sun, S. Zhang, T. Jiang, L. Zhang, J. Yu, Nano-wire networks of sulfur–polypyrrole composite cathode materials for rechargeable lithium batteries, Electrochemistry Communications 10 (2008) 1819- 1822.
  • [54] L. Qiu, S. Zhang, L. Zhang, M. Sun, W. Wang, Preparation and enhanced electrochemical properties of nano-sulfur/poly(pyrrole-co-aniline) cathode material for lithium/sulfur batteries, Electrochimica Acta 55 (2010) 4632-4636.
  • [55] Y. Fu, A. Manthiram, Enhanced Cyclability of lithium-sulfur batteries by a polymer acid-doped polypyrrole mixed ionic–electronic conductor, Chemistry of Materials 24 (2012) 3081-3087.
  • [56] Y. Fu, A. Manthiram, Orthorhombic bipyramidal sulfur coated with polypyrrole nanolayers as a cathode material for lithium-sulfur batteries, Journal of Physical Chemistry C 116 (2012) 8910-8915.
  • [57] W. Zhou, Y. Yu, H. Chen, F.J. DiSalvo, H.D. Abruña, Yolk-shell structure of polyaniline-coated sulfur for lithium-sulfur batteries, Journal of the American Chemical Society 135 (2013) 16736-16743.
  • [58] F. Wu, J. Chen, L. Li, T. Zhao, R. Chen, Improvement of rate and cycle performance by rapid polyaniline coating of a MWCNT/sulfur cathode, the Journal of Physical Chemistry C 115 (2011) 24411-24417.
  • [59] G.C. Li, G.R. Li, S.H. Ye, X.P. Gao, A polyanilinecoated sulfur/carbon composite with an enhanced high-rate capability as a cathode material for lithium/ sulfur batteries, Advanced Energy Materials 2 (2012) 1238-1245.
  • [60] L.F. Xiao, Y.L. Cao, J. Xiao, B. Schwenzer, M.H. Engelhard, L.V. Saraf, Z.M. Nie, G.J. Exarhos, J. Liu, A soft approach to encapsulate sulfur: polyaniline nanotubes for lithium-sulfur batteries with long cycle life, Advanced Materials 24 (2012) 1176- 1181.
  • [61] F. Wu, J. Chen, R. Chen, S. Wu, L. Li, S. Chen, T. Zhao, Sulfur/polythiophene with a core/shell structure: synthesis and electrochemical properties of the cathode for rechargeable lithium batteries, the Journal of Physical Chemistry C 115 (2011) 6057- 6063.
  • [62] Y. Zhang, Y. Zhao, A. Yermukhambetova, Z. Bakenov, P. Chen, Ternary sulfur/polyacrylonitrile/Mg0.6Ni0.4O composite cathodes for high performance lithium/ sulfur batteries, Journal of Materials Chemistry A 1 (2013) 295-301.
  • [63] M.S. Song, S.C. Han, H.S. Kim, J.H. Kim, K.T. Kim, Effects of nanosized adsorbing material on electrochemical properties of sulfur cathodes for Li/S secondary batteries, Journal of The Electrochemical Society 151 (2004) A791-A795.
  • [64] X. Ji, S. Evers, R. Black, L.F. Nazar, Stabilizing lithium-sulphur cathodes using polysulphide reservoirs, Nature Communications 2 (2011) 325. [65] S. Evers, T. Yim, L.F. Nazar, Understanding the nature of absorption/adsorption in nanoporous polysulfide sorbents for the Li–S battery, Journal of Physical Chemistry C 116 (2012) 19653-19658.
  • [66] Z.W. Seh, W. Li, J.J. Cha, G. Zheng, Y. Yang, M.T. McDowell, P.C. Hsu, Y. Cu, Sulphur-TiO2 yolkshell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries, Nature Communications 4 (2013) 1331.
  • [67] Q. Pang, D. Kundu, M. Cuisinier, L.F. Nazar, Surfaceenhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries, Nature Communications 5 (2014) 4759.
  • [68] C.J. Hart, M. Cuisinier, X. Liang, D. Kundu, A. Garsuch, L.F. Nazar, Rational design of sulphur host materials for Li-S batteries: correlating lithium polysulphide adsorptivity and self-discharge capacity loss, Chemical Communications 51 (2015) 2308-2311.
  • [69] H.J. Peng, Q. Zhang, Designing host materials for sulfur cathodes: from physical confinement to surface chemistry, Angewandte Chemie International Edition 54 (2015) 11018-11020.
  • [70] J. Song, T. Xu, M.L. Gordin, P. Zhu, D. Lv, Y.B. Jiang, Y. Chen, Y. Duan, D. Wang, Nitrogendoped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-arealcapacity sulfur cathode with exceptional cycling stability for lithium-sulfur batteries, Advanced Functional Materials 24 (2014) 1243-1250.
  • [71] D.S. Jung, T.H. Hwang, J.H. Lee, H.Y. Koo, R.A. Shakoor, R. Kahraman, Y.N. Jo, M.S. Park, J.W. Choi, Hierarchical porous carbon by ultrasonic spray pyrolysis yields stable cycling in lithium-sulfur battery, Nano Letter 14 (2014) 4418-4425.
  • [72] H, Chen, W, Dong, J, Ge, C, Wang, X, Wu, W, Lu, L. Chen, Ultrafine sulfur nanoparticles in conducting polymer shell as cathode materials for high performance lithium/sulfur batteries, Scientific Reports 3 (2013) 1910.
  • [73] W. Zheng, X.G. Hu, C.F. Zhang, Electrochemical properties of rechargeable lithium batteries with sulfur-containing composite cathode materials, Electrochemical and Solid-State Letters 9 (2006) A364-A367.
  • [74] B. Ding, L. Shen, G. Xu, P. Nie, X. Zhang, Encapsulating sulfur into mesoporous TiO2 host as a high performance cathode for lithium-sulfur battery, Electrochimica Acta 107 (2013) 78-84.
  • [75] Q. Li, Z. Zhang, K. Zhang, L. Xu, J. Fang, Y. Lai, J. Li, Synthesis and electrochemical performance of TiO2–sulfur composite cathode materials for lithiumsulfur batteries, Journal of Solid State Electrochemistry 17 (2013) 2959-2965.
  • [76] K. Dong, S. Wang, H. Zhanf, J. Wu, Preparation and electrochemical performance of sulfur-alumina cathode material for lithium-sulfur batteries, Materials Research Bulletin 48 (2013) 2079-2083.
  • [77] Y.J. Choi, B.S. Jung, D.J. Lee, J.H. Jeong, K.W. Kim, H.J. Ahn, K.K. Cho, H.B. Gu, Electrochemical properties of sulfur electrode containing nano Al2O3 for lithium/sulfur cell, Physica Scripta 62 (2007) 2007.
  • [78] C. Barchasz, F. Mesguich, J. Dijon, J.C. Leprêtre, S. Patoux, F. Alloin, Novel positive electrode architecture for rechargeable lithium/sulfur batteries, Journal of Power Sources 211 (2012) 19-26.
  • [79] S.H. Chung, A. Manthiram, Lithium-sulfur batteries with superior cycle stability by employing porous current collectors, Electrochimica Acta 107 (2013) 569-576.
  • [80] S.H. Chung, A. Manthiram, Nano-cellular carbon current collectors with stable cyclability for Li-S batteries, Journal of Materials Chemistry A 1 (2013) 9590-9596.
  • [81] S.H. Chung, A. Manthiram, Low-cost, porous carbon current collector with high sulfur loading for lithiumsulfur batteries, Electrochemistry Communications 38 (2014) 91-95. [82] S.H. Chung, A. Manthiram, Carbonized eggshell membrane as a natural polysulfide reservoir for highly reversible Li-S batteries, Advanced Materials 26 (2014) 1360-1365.
  • [83] Y. Fu, Y.S. Su, A. Manthiram, Li2S-Carbon Sandwiched Electrodes with Superior Performance for Lithium-Sulfur Batteries, Advanced Energy Materials 4 (2014) 655.
  • [84] K. Zhang, Q. Li, L. Zhang, J. Fang, J. Li, F, Qin, Z. Zhang, Y, Lai, From filter paper to carbon paper and toward Li-S battery interlayer, Materials Letters 121 (2014) 198-201.
  • [85] K. Zhang, F, Qin, J. Fang, Q. Li, M. Jia, Y. Lai, Z. Zhang, J. Li, Nickel foam as interlayer to improve the performance of lithium-sulfur battery, Journal of Solid State Electrochemistry 18 (2014) 1025-1029.
  • [86] Y. Huang, M. Zheng, Z. Lin, B. Zhao, S. Zhang, J. Yang, C. Zhu, H. Zhang, D. Sun, Y. Shi, Flexible cathodes and multifunctional interlayers based on carbonized bacterial cellulose for high-performance lithium-sulfur batteries, Journal of Materials Chemistry A 3 (2015) 10910-10918.
  • [87] C.L. Lee, I.D. Kim, A hierarchical carbon nanotubeloaded glass-filter composite paper interlayer with outstanding electrolyte uptake properties for highperformance lithium-sulphur batteries, Nanoscale 7 (2015) 10362-10367.
  • [88] Q. Zeng, X. Leng, K.H. Wu, I.R. Gentle, D.W. Wang, Electroactive cellulose-supported graphene oxide interlayers for Li-S batteries, Carbon 93 (2015) 611-619.
  • [89] J. Balach, T. Jaumann, M. Klose, S. Oswald, J. Eckert, L. Giebeler, Mesoporous carbon interlayers with tailored pore volume as polysulfide reservoir for highenergy lithium-sulfur batteries, the Journal of Physical Chemistry C 119 (2015) 4580-4587.
  • [90] G. Ma, Z. Wen, Q. Wang, C. Shen, P. Peng, J. Jin, X. Wu, Enhanced performance of lithium sulfur battery with self-assembly polypyrrole nanotube film as the functional interlayer, Journal of Power Sources 273 (2015) 511-516.
  • [91] G. Ma, Z. Wen, J. Jin, M. Wu, X. Wu, J. Zhang, Enhanced cycle performance of Li–S battery with a polypyrrole functional interlayer, Journal of Power Sources 267 (2014) 542-546.
  • [92] Z. Xiao, Z. Yang, L. Wang, H. Nie, M. Zhong, Q. Lai, X. Xu, L. Zhang, S. Huang, A lightweight TiO2/ graphene interlayer, applied as a highly effective polysulfide absorbent for fast, long-life lithium–sulfur batteries, Advanced Materials 27 (2015) 2891-2898. [93] C. Tang, Q. Zhang, M.Q. Zhao, J.Q. Huang, X.B. Cheng, G.L. Tian, H.J. Peng, F. Wei, Nitrogen-doped aligned carbon nanotube/graphene sandwiches: facile catalytic growth on bifunctional natural catalysts and their applications as scaffolds for high-rate lithiumsulfur batteries, Advanced Materials 26 (2014) 6100- 6105. [94] G. Zhou, S. Pei, L. Li, D.W. Wang, S. Wang, K. Huang, L.C. Yin, F. Li, H. M. Cheng, A grapheme-pure-sulfur sandwich structure for ultrafast, long-life lithium-sulfur batteries, Advanced Materials 26 (2014) 625-631.
  • [95] J. Song, Z. Yu, T. Xu, S. Chen, H. Sohn, M. Regula, D. Wang, Flexible free standing sandwich-structured sulfur cathodes with superior performance for lithiumsulfur batteries, Journal of Materials Chemistry A 2 (2014) 8623-8627.
  • [96] Y. Chen, S. Lu, X. Wu, J. Liu, Flexible carbon nanotube-graphene/sulfur composite film: freestanding cathode for high-performance lithium/sulfur batteries, Journal of Physical Chemistry C 119 (2015) 10288-10294.
  • [97] G. Wang, Y. Lai, Z. Zhang, J. Li, Z. Zhang, Enhanced rate capability and cycle stability of lithium-sulfur batteries with a bifunctional MCNT@PEG-modified separator, Journal of Materials Chemistry A 3 (2015) 7139-7144.
  • [98] J.Q. Huang, T.Z. Zhuang, Q. Zhang, H.J. Peng, C.M. Chen, F. Wei, Permselective graphene oxide membrane for highly stable and anti-selfdischarge lithium-sulfur batteries, ACS Nano 9 (2015) 3002-3011.
  • [99] J.Q. Huang, Q. Zhang, H.J. Peng, X.Y. Liu, W.Z. Qian, F. Wei, Ionic shield for polysulfides towards highly-stable lithium-sulfur batteries, Energy & Environmental Science 7 (2014) 347-353.
  • [100]R. Fang, G. Zhou, S. Pei, F. Li, H.M. Cheng, Localized polyselenides in a graphene-coated polymer separator for high rate and ultralong life lithiumselenium batteries, Chemical Communications 51 (2015) 3667-3670.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ef560907-6c02-483f-b9fc-983afbff1c86
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.