Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The supported co-catalyst (Co, Ni)3O4/Al2O3 was prepared via using a co-precipitation method. Three sets of these materials were prepared by calcination at three different temperatures 500, 600, and 700°C. Crystal structure of the prepared materials was investigated using powder X-rays diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), Atomic force microscope (AFM), and specific surface area (BET). The activity of the prepared catalysts was investigated by following both of photocatalytic and adsorption removal of Reactive yellow 145 dye (RY 145) from simulated industrial wastewaters. In this study, different reaction conditions were performed such as effect of pH of the reaction mixture, mass dosage of the used catalyst, and effect of temperature. In addition to that adsorption isotherms and reaction kinetics were investigated. Also the activity of these catalysts were investigated after cyclization of the used catalysts.
Czasopismo
Rocznik
Tom
Strony
1--9
Opis fizyczny
Bibliogr. 54 poz., rys., tab.
Twórcy
autor
- Babylon University, Chemistry Department, College of Science, Iraq
autor
- Babylon University, Chemistry Department, College of Science, Iraq
autor
- Babylon University, Chemistry Department, College of Science, Iraq
Bibliografia
- 1. Iino, K., Kitano, M., Takeuchi, M., Matsuoka, M. & Anpo M. (2006). Design and development of second generation titration oxide photocatalyst materials operating under visible light irradiation by applying advanced ion-engineering techniques. Current Appl. Physics. 6(6), 982-986. DOI: 10.1016/j.cap.2005.07.002.
- 2. Tichonovas, M., Krugly, E., Racys, V., Hippler, R., Kauneliene, V., Stasiulaitiene, I. & Martuzevicius D. (2013). Degradation of various textile dyes as wastewater pollutants under dielectric barrier discharge plasma treatment. Chem. Eng. J. 229, 9-19. DOI: 10.1016/j.cej.2013.05.095.
- 3. Corro, G., Vazquz, O. & Fierro. J. (2005). Strong improvement on CH4 oxidation over Pt/γ-Al2O3 catalysts, Catalysis. Communications 6(4), 287-292. DOI: 10.1016/j.catcom.2005.01.012.
- 4. Cuchillo, O., Lopez, A., Carrillo, L., Hernandez, A., Martinez, L. & Lee S. (2010). Synthesis of TiO2 using different hydrolysis catalysts and doped with Zn for efficient degradation of aqueous phase pollutants under UV light. Res. Chem.Intermed. 36, 103-113. DOI: 10.1007/s11164-010-0119-4.
- 5. Song, Y. & Bai, J. (2010). TiO2-assisted photodegradatoin of Direct Blue 78 in aqueous solution in sunlight. Water Air Soil Pollut. 213(1), 311-317. DOI: 10.1007/ s11270-010-0386-0.
- 6. Wang, S. (2008). A Comparative study of Fenton and Fenton-like reaction kinetics in decolourisation of wastewater. Dyes Pigm. 76(3), 714-720. DOI: 10.1016/j. dyepig.2007.01.012.
- 7. Khehra, M., Saini, H., Sharma, D., Chadha, B. & Chimni S. (2005). Comparative studies on potential of consortium and constituent pure bacterial isolates to decolorize azo dyes. Water Res. 39(20), 5135-5141. DOI: 10.1016/j. watres.2005.09.033.
- 8. Robinson, T., McMullan, G., Marchant, R. & Nigam, P. (2001). Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource Technology. 77(3), 247-255. DOI: 10.1016/S0960-8524(00)00080-8.
- 9. Zamora, P., Kunz, A., Moraes, S., Pelegrini, R., Molerio, P., Reyes, J. & Duran, N. (1999). Chemosphere. Degradation of Reactive Dyes I. A Comparative Study of Ozonation, Enzymatic and Photochemical Processes. Chemosphere 38(4), 835-852. DOI: 10.1016/S0045-6535(98)00227-6.
- 10. Ladakowicz, L., Solecka, M. & Zylla, R. (2001). Biodegradation, decolourisation and detoxification of textile wastewater enhanced by advanced oxidation processes, J. Biotech. 89(2, 3), 175-184. DOI: 10.1016/S0168-1656(01)00296-6.
- 11. Georgiou, D., Melidis, P., Aivasidis, A. & Gimouhopoulos, K. (2002). Degradation of azo-reactive dyes by ultraviolet radiation in the presence of hydrogen peroxide. Dyes Pigm. 52, 69-78. DOI: 10.1016/S0143-7208(01)00078-X.
- 12. Farrauto, R. & Bartholomew C. (1997). Fundamentals of Industrial Catalytic Processes, Chapman & Hall, Kluwer Academic Publishers, London.
- 13. Duprez, D., Pereira, P., Barbier, J. & Maurel R. (1980). Catalyst deactivation in toluene steam dealkylation. React. Kin. Catal. Let. 13(3), 217-223. DOI: 10.1007/BF02068569.
- 14. Pourbaix, M. (1974). Atlas of Electrochemical Equilibrium, Pergamum Press, New York, Translated from French by J.A. Franklin, USA.
- 15. Pal, J. & Chauhan, P. (2010). Study of physical properties of cobalt oxide (Co3O4) nanocrystals. Mater. Character. 61(5), 575-579. DOI: 10.1016/j.matchar.2010.02.017.
- 16. Sujia, T.T., Hamagamia, T., Kawamurab, T., Yamakia, J. & Masaharu, T. (2005). Laser ablation of cobalt and cobalt oxides in liquids: influence of solvent on composition of prepared nanoparticles. Japan Appl. Surf. Sci. 243(30), 214-219. DOI: 10.1016/j.apsusc.2004.09.065.
- 17. Hussein, F. (2012). Comparison between Solar and Artificial Photocatalytic Decolorization of Textile Industrial Wastewater. Int. J. Photoener. 2012, 1-10. doi. org/10.1155/2012/793648.
- 18. Hoffmann, R., Scot Martin, T., Wonyong, C. & Bahnemann, W. (1995). Environmental Applications of Semiconductor Photocatalysis. Chem. Rev. 95(1), 69-96. DOI: 10.1021/cr00033a004.
- 19. Hussain, B., Kashif, D., Ahmad, B., Zubair, A., Yousaf, A., Matloob, I., Muhammad, U., Muhmmmad, Z. & Asim M. (2013). Degradation Study of C.I Reactive Yellow 145 by Advanced Oxidation Process. Asian J. Chem. 25 (15), 8668-8672. DOI: 10.14233/ajchem.2013.14996.
- 20. Lendzion-Bielun, Z., Narkiewicz, U. & Arabczyk, W. (2013). Cobalt-based Catalysts for Ammonia Decomposition. Materials 6(6), 2400-2409. DOI: 10.3390/ma6062400.
- 21. Haznan, A., Byoung Sung, A., Chang Soo, K. & Kye Sang, Y. (2007). Preparation and Characterization of MgO− CeO2 Mixed Oxide Catalysts by Modified Coprecipitation Using Ionic Liquids for Dimethyl Carbonate Synthesis. Ind. Engine. Chem. Res. 46(24), 7936-7941. DOI: 10.1021/ ie070528d.
- 22. Sanchai, K. & Hang, H. (2011). Study of NiO -CoO and Co3O4 -Ni3O4 Solid Solutions in Multiphase Ni -Co -O Systems. Ind. Engine. Chem. Res. 50(4), 2015-2020. DOI: 10.1021/ie101249r.
- 23. Farhadi, S., Safabakhsh, J. & Zaringhadam, P. (2013). Synthesis, characterization, and investigation of optical and magnetic properties of cobalt oxide (Co3O4) nanoparticles. J. Nanos. Chem. 69(3), 68135-465. DOI: 10.1186/2193-8865-3-69.
- 24. Ni, Y., Ge, X., Zhang, Z., Liu, H., Zhu, Z. & Ye Q. (2001). A simple reduction-oxidation route to prepare Co3O4 nanocrystals. Mater. Res. Bull. 36(13-14), 2383-2387. DOI: 10.1016/S0025-5408(01)00739-5.
- 25. Wilson, S. (1979). The dehydration of boehmite, γ-AlOOH, to γ-Al2O3. J. Sol. State Chem. 30(2), 247-255. DOI: 10.1016/0022-4596(79)90106-3.
- 26. Thirumalairajan, S., Girija, K., Hebalkar,Y., Mangalaraj, D., Viswanathana, C. & Ponpandian, N. (2013). Shape evolution of perovskite LaFeO3 nanostructures: a systematic investigation of growth mechanism properties and morphology dependent photocatalytic activities. RSC Advances 3(20), 7549-7561. DOI: 10.1039/C3RA00006K.
- 27. Jing, X., Song, S., Wang, J., Ge, L., Jamil, S., Liu, Q., Mann, T., He, Y., Zhang, M., Wei, H. & Liu, L. (2012). Solvothermal synthesis of morphology controllable CoCO-3 and their conversion to Co3O4 for catalytic application. Pow. Technol. 21, 624-628. DOI: 10.1016/j.powtec.2011.11.040.
- 28. Wang, G., Cao, D., Yin, C., Gao, Y., Yin, J. & Cheng, L. (2013). Facile synthesis of porous (Co, Mn)3O4 nanowires free-standing on a Ni foam and their catalytic performance for H2O2 electroreduction. J. Mater. Chem. A. 1 (5), 1669-1676. DOI: 10.1039/C2TA00219A.
- 29. Yamamoto, S., Matsuoka, O., Fukada, I., Ashida, Y., Honda, T. & Yamamoto, N.(1996). Characterization of pillared montmorillonites with the atomic force microscope (AFM). Journal of Catalysis. 159( 2), 401-409. DOI: 10.1006/ jcat.1996.0103.
- 30. Liu Affiliated with Civil and Environmental Engineering School, University of Science and Technology Beijing National Key State Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, X., Feng, Y. & Li, H. (2011). Preparation of basic magnesium carbonate and its thermal decomposition kinetics in air. J. Cent. South Univ. Technol. 18(6), 1865-1870. DOI: 10.1007/s11771-011-0915-z.
- 31. Kuśmierek., K.A. & Świątkowski A. (2015). Removal of chlorophenols from aqueous solutions by sorption onto walnut, pistachio and hazelnut shells. Pol. J. Chem. Technol. 17(1), 23-31. DOI: 10.1515/pjct-2015-0005, March 2015.
- 32. Ferrero, F. (2007). Dye removal by low cost adsorbents: hazelnut shells in comparison with wood sawdust. J. Haz. Mater. 142(1), 144-152. DOI: 10.1016/j.jhazmat.2006.07.072.
- 33. Monika, S. (2008). Advance oxidation Processes For The Degradation of Pesticides, Msc Thesis, Department of Biotechnology & Environmental Sciences. Thapar University Patiala, Malaysia.
- 34. Wang, C., Lee, K., Lyu, D. & Juang, L. (2008). Photocatalytic degradation of C.I. Basic Violet 10 using TiO2 catalysts supported by Y zeolite: an investigation of the effects of operational parameters. Dyes Pigm. 76(3), 817-824. DOI: 10.1016/j.dyepig.2007.02.004.
- 35. Hussein, F. & Halbus, A. (2012). Rapid Decolorization of Cobalamin. Intern. J. Photoener. 2012, 1-9. DOI: 10.1155/2012/495435.
- 36. Narendra, T., Oza, A. & Ingale, S. (2014). TiO2 as an Oxidant for Removal of Chemical Oxygen Demand from Sewage. Univ. J. Environ. Res. Technol. 4(3), 165-171. www.environmentaljournal.org
- 37. Daneshvar, N., Salari, D. & Khataee, A. (2003). Photocatalytic degradation of azo dye acid red 14 in water: investigation of the effect of operational parameters. J. Photochem. Photobiol. A: Chemistry 157(1), 111-116. DOI: 10.1016/S1010-6030(03)00015-7.
- 38. Kumar, K., Navjeet, K. & Sukhmehar, S. (2009). Photocatalytic Degradation of Two Commercial Reactive Dyes in Aqueous Phase Using Nanophotocatalysts. Nano. Res. Let. 4(7), 709-716. DOI: 10.1007/s11671-009-9300-3.
- 39. Daneshvar, N., Aber, S., Seyed Dorraji, M., Khataee, A. & Rasoulifard, M. (2007). Photocatalytic degradation of the insecticide diazinon in the presence of prepared nanocrystalline ZnO powders under irradiation of UV-C light. Separat. Purif. Technol. 58(1), 91-98. DOI:10.1016/j. seppur.2007.07.016.
- 40. Wang, H., Xie, C., Zhang, W., Cai, S., Yang, Z. & Gui Y. (2007). Comparison of dye degradation efficiency using ZnO powders with various size scales. J. Hazard. Mater. 141(3), 645-652. http://dx.doi.org/10.1155/2012/329082.
- 41. El-Bahy, Z., Ismail, A. & Mohamed, R. (2009 ).Enhancement of titania by doping rare earth for photodegradation of organic dye (Direct Blue). Journal of Hazardous Materials. 166(1), 138-143. DOI: 10.1016/j.jhazmat.2008.11.022.
- 42. Ludwig, C., Byrne, H., Stokke, J., Chadik, P. & Mazyck, M. (2011). Performance of Silica-Titania Carbon Composites for Photocatalytic Degradation of Gray Water. J. Environ.Engine. 137(1), 38-46. DOI.org/10.1061/(ASCE) EE.1943-7870.0000301.
- 43. Lizama, C., Freer, J., Baeza, J. & Mansilla, H. (2002). Optimized photodegradation of Reactive Blue 19 on TiO2 and ZnO suspensions. Catalysis. Today 76(2), 235-246. DOI: http://dx.doi.org/10.1016/S0920-5861(02)00222-5.
- 44. Movahedi, M., Mahjoub, A. & Janitabar-Darzi, S. (2009). Photodegradation of Congo red in aqueous solution on ZnO as an alternative catalyst to TiO. J. Iranian Chem. Soc. 6(3), 570-577. DOI: 10.1007/BF03246536.
- 45. Yu Chen, C. (2009). Photocatalytic Degradation of Azo Dye Reactive Orange 16 by TiO2. Water Air Soil Pollut. 202(1), 335-342. DOI: 10.1007/s11270-009-9980-4.
- 46. Hermann, J. (1999). Heterogeneous Photocatalysis: Fundamentals and Applications to the Removal of Various Types of Aqueous Pollutants. Catal. Today. 53 (1), 115-129. DOI: 10.1016/S0920-5861(99)00107-8.
- 47. Soares, E., Lansarin, M. & Brazilian, C. ( 2007). A study of process variablse for the photocatalytic degradation of rahodamine B. Braz. J. Chem. Engine. 24 (1), 29-36. http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322007000100003.
- 48. Hussein, F., Obies, M. & Drea, A. (2010). Photocatalytic decolorization of bismarck brown R by suspension of titanium dioxide. Inter. J. Chem. Sci. 8(4), 2763-2774. www.sadgurupublications.com/.../2010/89_1176_8(4)2010
- 49. Attia, A., Kadhim, S. & Hussein, F. (2008). Photocatalytic Degradation of Textile Dyeing Wastewater Using Titanium Dioxide and Zinc Oxide. E-J. Chem. 5(8), 219-223. http://www.e-journals.net
- 50. Noureddine, B., Samir, Q., Ali, A., Abderrahman, N. & Yhya, A. (2010) Photoctalytic degradation of an azo reactive dye , Reactive yellow 84, in water rusing an inindustrilal titanium dioxide coated media. Arabian J. Chem. 3, 279-283.
- 51. Chakrabarti, S. & Dutta, B. (2004). Photocatalytic degradation of model textile dyes in waste water using ZnO as semiconductor catalyst. J. Hazard. Mater. 112(3), 269-278. DOI: 10.1016/j.jhazmat.2004.05.013.
- 52. Treybal, R. (1968). Mass Transfer Operations, 2nd ed, McGraw Hill, New York, USA.
- 53. Al-Khatib, L., Fraige, F., Al-Hwaiti, M. & Al-Khashman, O. (2012). Adsorption from aqueous solution on to natural and acid activated bentonite. Am. J. Environ. Sci. 8(5), 510-522. DOI: 10.3844/ajessp.2012.510.522.
- 54. Sharma, R., Goyal, K., Chattree, A.R., Baggi, T. & Gupta, A. (2013). Comparative Analysis of Inkjet Printer Inks Extracted from Printed Documents by FT-IR Spectrophotometry. IOSR J. Appl. Chem. 5(3). 36-41. www.iosrjournals.org
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ef55427e-5cc3-427c-abd7-9d0765498dfb