PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

UV-induced photodecomposition of 2, 2′, 4, 4′, 6, 6′-hexanitrostillbene (HNS)

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
HNS (2, 2’, 4, 4’, 6, 6’-hexanitrostillbene) is a heat-resistant photosensitive explosive widely used in the booster charge. Investigation of the photodecomposition mechanism may provide important information for controlling and enhancing the detonation performance, also for the lifetime prediction. The UV-induced photodecomposition of HNS has been subjected to experimental studies. The UV-Vis spectra, X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance spectra (EPR) demonstrate the formation of NO2 free radicals and nitroso derivatives of HNS upon UV irradiation, which proves well known facts that C–NO2 breaking and removal of oxygen from the nitro group take part in the photodecomposition of HNS.
Słowa kluczowe
Wydawca
Rocznik
Strony
306--311
Opis fizyczny
Bibliogr. 20 poz., rys., wykr.
Twórcy
autor
  • Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang Sichuan, People’s Republic of China, 621900
  • School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing Jiangsu, People’s Republic of China, 210094
autor
  • Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang Sichuan, People’s Republic of China, 621900
autor
  • Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang Sichuan, People’s Republic of China, 621900
autor
  • Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang Sichuan, People’s Republic of China, 621900
Bibliografia
  • [1] WILLIAMS D. L. et al., J. Phys Chem. A, 107 (2003), 9491.
  • [2] LM H. S., BERNSTEIN E. R., J. Chem. Phys., 113 (2000), 7911.
  • [3] BHATTACHARYA A., GUO Y. Q., BERNSTEIN E. R., J. Phys. Chem. A., 113 (2009), 811.
  • [4] GUO Y. Q., BHATTACHARYA A., BERNSTEIN E. R., J. Phys. Chem. A., 113 (2009), 85.
  • [5] PARK M.S., JUNG K.H., UPADHYAYA H. P., VOLPP H. R., Chem. Phys., 270 (2001), 133.
  • [6] LAZAROU Y.G., PAPAGIANNAKOPOULOS P., J. Phys. Chem., 94 (1990), 7114.
  • [7] MCQUAID M.J., MIZIOLE A.W., SAUSA R. C., J. Phys. Chem., 95 (1991), 2713.
  • [8] SHARMA J., GARRETT W.L., OWENS F. J., VOGEL V. L., J. Phys. Chem., 86 (1982), 1657.
  • [9] KAKAR S. et al., Phys. Rev. B., 62 (2000), 15666.
  • [10] BRITT A. D., MONIZ W.B., CHINGAS G. C., MOORED. W., HELLER C. A., KO C. L., Propell. Explos. Pyrots., 6 (1981), 94.
  • [11] MCDONALD J.W. et al., J. Energ. Mater., 19(2001), 101.
  • [12] GUO Y. Q., GREENFIELD M., BERNSTEIN E. R., J. Chem. Phys., 122 (2005), 244310-1.
  • [13] GREENFIELD M., GUO Y. Q., BERNSTEIN E. R., Chem. Phys. Lett., 430 (2006), 277.
  • [14] GUO Y. Q., GREENFIELD M., BHATTACHARYA A., BERNSTEIN E. R., J. Chem. Phys., 127 (2007), 154301-1.
  • [15] PACE M. D., Mol. Cryst. Liq. Cryst., 156 (1988), 167.
  • [16] HAWARI J., DESCHAMPS S., BEAULIEU C., PAQUET L., HALASZ A., Water. Res., 38(2004), 4055.
  • [17] SMIT K. J., J. Energ. Mater., 9 (1991), 81.
  • [18] OWENS F.J., SHARMA J., J. Appl. Phys., 51 (1980), 1494.
  • [19] PACE M.D., CARMICHAEL A.J., J. Phys. Chem., 101(1997), 1848.
  • [20] CHEN Z., ZHENG X., LIU Z., PAN Q., WANG Y., Chinese J. Energ. Mater., 4 (2005), 249.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ef50623b-024b-4991-a0ff-8b0bddbc9d74
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.