PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Resistance of columns

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A large strain, large displacement finite element model that allows element separation and failure is constructed and validated based on existing results of reinforced concrete columns subjected to blast loads. In this approach, concrete is represented with the Johnson-Holmquist-Cook model while a plastic-kinematic relationship describes steel behavior. The model is used to predict the capacity of typical reinforced concrete bridge columns to resist an assumed blast load scenario, where changes in concrete strength, steel reinforcement ratio, and axial force on the column are considered. The effectiveness of a method of column protection is investigated, where existing columns are wrapped with a relatively inexpensive steel fiber reinforced polymer (SFRP) jacket. It was found that the use of SFRP can significantly enhance the resistance of the columns.
Czasopismo
Rocznik
Strony
66--69
Opis fizyczny
Bibliogr. 22 poz., il., tab.
Twórcy
autor
  • Wayne University, Dept. of Civil & Engineering, Detroit, USA
autor
  • Wayne University, Dept. of Civil & Engineering, Detroit, USA
Bibliografia
  • [1] American Association of State and Highway Transportation Officials.: AASHTO LRFD Bridge Design Specifications, 2014.
  • [2] Yi Z., Agrawal A., Ettouney M. Alampalli S.: Blast load effects on highway bridges. I: modeling and blast load effects. ASCE Journal of Bridge Engineering, 2013.
  • [3] Zhu H, Zhang X, Li Y.: Analysis of the synergetic effects of blast wave and fragment on concrete bridges. Chinese Society of Theoretical and Applied Mechanics, 2013.
  • [4] Winget D., Marchand, K., Williamson E.: Analysis and design of critical bridges subjected to blast loads. ASCE Journal of Bridge Engineering, 2005.
  • [5] Williamson E., Oguzhan B., Carrie D., Williams G.: Performance of bridge columns subjected to blast loads. I: experimental program. ASCE Journal of Bridge Engineering, 2011.
  • [6] Williamson E., Oguzhan B., Carrie D., Williams G.: performance of bridge columns subjected to blast loads. II: results and recommendations. ASCE Journal of Bridge Engineering, 2011.
  • [7] Williams G., Holland, C. Williamson, E., Bayrak, O., Marchand, K., Ray, J.: Blast-resistant highway bridges: design and detailing guidelines. WITPress, Ashurst Lodge, Ashurst, Southampton, United Kingdom, 2008.
  • [8] Williams, G.: Analysis and response mechanisms of blast loaded reinforced concrete columns. Ph.D. dissertation, Univ. of Texas at Austin, Austin, TX., 2009.
  • [9] Williams, G. Daniel and Williamson Eric B.: Response of reinforced concrete bridge columns subjected to blast loads. ASCE Journal of Bridge Engineering, 2011.
  • [10] Son J., Lee, H-J.: Performance of cable-stayed bridge pylons subjected to blast loading. Elsevier Ltd, Kidlington, Oxford, United Kingdom, 2011.
  • [11] Yi Z., Agrawal A., Ettouney M. Alampalli S.: Blast load effects on highway bridges. II: failure modes and multihazard correlations. ASCE Journal of Bridge Engineering, 2013.
  • [12] Fujikura S., Bruneau, M.: Experimental investigation of seismically resistant bridge piers under blast loading. ASCE Journal of Bridge Engineering, 2011.
  • [13] Malvar L., Crawford J., Morrill K.: Use of composites to resist blast. ASCE Journal of Bridge Engineering, 2007.
  • [14] Heffernan P., Wight R., Erki M.-A.: Research on the Use of FRP for critical load-bearing infrastructure in conflict zones. ASCE Journal of Bridge Engineering, 2011.
  • [15] Marchand K., Williamson E., Winget D.: Analysis of blast loads on bridge substructures. WITPress, Ashurst Lodge, Ashurst, Southampton, United Kingdom, 2004.
  • [16] Rutner M., Astaneh-asl, A. Son, J.: Blast resistant performance of steel and composite bridge piers. ETH Honggerberg, Zurich, Switzerland, 2006.
  • [17] Fujikura S., Bruneau M., Lopez-Garcia D.: Experimental investigation of multihazard resistant bridge piers having concrete-filled steel tube under blast loading. ASCE Journal of Bridge Engineering, 2008.
  • [18] Hardwire Armor Systems: Hardwire tapes. Pocomoke City MD. https://www.hardwirellc.com, accessed 2017.
  • [19] Livermore Software Technology Corporation:. LS-DYNA keyword user’s manual, version 971, Livermore, CA., 2013.
  • [20] Holmquist T., Johnson G., Cook W.: A computational constitutive model for concrete subjected to large strains, high strain rates, and high pressures. Proc., 14th Int. Symp. on Ballistics, American Defense Preparedness Association, 1993.
  • [21] Hyde D.: User's Guide for Microcomputer Program CONWEP, Applications of TM 5-855-1, Fundamentals of Protective Design for Conventional Weapons. SL-88-1, U.S. Army Corps of Engineers Waterways Experiment Station Instruction, Vicksburg, MS, 1988.
  • [22] Kingery, C, Bulmash, G.: Air-Blast Parameters from TNT Spherical Air Burst and Hemispherical Surface Burst. ARBRL-TR-02555, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD, 1984.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ef4c19f9-2875-40b1-b0b0-d150d80c2759
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.