PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of the Effect of Needle Diameter and the Solution Flow Rate on Fiber Morphology in the Electrospinning Method

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the study, the morphological properties of polyacrylonitrile (PAN) fibers produced by electrospinning at different needle diameters and solution flow rates were investigated. For this purpose, 20G and 22G diameter needles were used. The fibres were produced at flow rates of 0.5 ml/hr, 1 ml/hr and 1.5 ml/hr. Scanning electron microscopy (SEM) was used to measure nanofiber diameters. Statistical analyzes were made with the help of the SPSS program. It was observed that finer fibers were obtained as the needle diameter decreased. As the solution flow rate increased, thicker fibers were obtained. In addition, it was observed that the needle diameter and flow rate affect the fiber arrangement and interfiber spacing.
Słowa kluczowe
Rocznik
Strony
22--29
Opis fizyczny
Bibliogr. 47 poz., rys., tab.
Twórcy
  • Pamukkale University, Denizli Vocational School of Technical Sciences, Textile Technology Program, Denizli, Turkey
Bibliografia
  • 1. Sabit, B. (2019). Elektro lif çekim (Electrospınnıng) yöntemiyle üretilen nanolif iplik özelliklerinin iyileştirilmesi (Yüksek Lisans Tezi). Tekirdağ Namık Kemal Üniversitesi, Tekirdağ.
  • 2. Formhals, A. (1934). Process and apparatus for preparing artficial threads. US Patent, No.1, 975, 504.
  • 3. Ramakrishna, S., Fujihara, K., Teo, W.E., Lim, T.C., Ma, Z. (2005). An ıntroduction to electrospinning and nanofibers. Singapore: World Scientific Publishing Co. Pte. Ltd.
  • 4. Ghafari, E., Feng, Y., Liu, Y., Ferguson, I. and Lu, N. (2017). Investigating process-structure relations of ZnO nanofiber via electrospinning method. Composites Part B., 116, 40 – 45.
  • 5. Liu, J., Chang, M. J. and Du, H. L. (2016). Facile preparation of cross-linked porous poly(vinyl alcohol) nanofibers by electrospinning. Mater. Lett., 183, 318 – 321.
  • 6. Celep, G. K., Dincer, K. (2017). Optimization of parameters for electrospinning of polyacrylonitrile nanofibers by the Taguchi method. International Polymer Processing Journal of the Polymer Processing Society, 508-514.
  • 7. Emül, E. (2016). Elektrospin tekniği ile Nhap/jelatin/antikanserojen içeren nanofibril üretimi, karakterizasyonu ve hücre uyumunun araştırılması (Yüksek Lisans Tezi). Hacettepe Üniversitesi, Ankara.
  • 8. Kirecci, A., Özkoç, Ü., İçoğlu, H.İ. (2012). Determination of optimal production parameters for polyacrylonitrile nanofibers. Journal of Applied Polymer Science, 124(6), 4961-4968.
  • 9. Çakmen, A.B. (2019). Allantoin içeren antibakteriyel özellikte poliüretan/polikaprolakton temelli yara örtü malzemelerinin elektrospinning yöntemi ile hazırlanması ve uygulanması (Yüksek Lisans Tezi). İnönü Üniversitesi, Malatya.
  • 10. Yalçın, M. (2020). Elektroeğirme yöntemi ve nanofiber üretimi, Türkiye’de mühendislik ve fen bilimlerinde akademik araştırmalar. Ankara: İksad yayınevi.
  • 11. Ko, F. K., Li, Y., Lin, L. & Yang, H. (2013). Multifunctional composite nanofibers. Journal of Fiber Bioengineering and Informatics, 6(2), 129–138.
  • 12. Göktepe, F., Mülayim, B. B., Göktepe, Ö., Alisoy, H. & Sabit, B. (2022). The effect of collector parameters on nanofiber yarns produced by electro yarn spinning machine with conical collector. The Journal of The Textile Institute, 113(9), 1785-1798.
  • 13. He, H., Kara, Y., Molnar, K. (2018). Effect of needle characteristic on fibrous PEO produced by electrospinning. Resolution and Discovery, 1-5.
  • 14. Abunahel, B.M., Azman, N.Z.N., Jamil, M. (2018). Effect of needle diameter on the morphological structure of electrospun n-Bi2O3/Epoxy-PVA nanofiber mats. Chemical and Materials Engineering, 12 (6), 296-299.
  • 15. Shahabadi, S.M.S., Kheradmand, A., Montazeri, V., Ziaee, H. (2015). Effects of process and ambient parameters on diameter and morphology of electrospun polyacrylonitrile nanofibers. Polymer Science Series A, 57(2), 155-167.
  • 16. İçoğlu, H., İ. (2019). İğne çapı ve besleme hızının elektro çekim tekniğiyle üretilmiş poliakrilonitril nanoliflerinin morfolojisine etkisi. Çukurova Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 34(4), 163-169.
  • 17. Akgül, Y., Kılıç, A. (2018). Polivinil alkol (PVA) nanoliflerin üretiminde yenilikçi bir yaklaşım: santrifüjlü lif üretimi. Tekstil ve Mühendis, 25(109), 30-36.
  • 18. Beypazar, Ö. (2013). Nanolif üretiminde çap kontrolü (Yüksek Lisans Tezi). Namık Kemal Üniversitesi, Tekirdağ.
  • 19. Süslü, A. (2009). Elektro-eğirme yöntemi ile nanofiber ve nanotüp üretimi (Yüksek Lisans Tezi). Dokuz Eylül Üniversitesi, İzmir.
  • 20. Şahintürk, Y. (2010). Poliakrilonintril bazlı nanoelyafların elektroeğirme yöntemi ile üretimi ve karakterizasyonu (Yüksek Lisans Tezi). Hacettepe Üniversitesi, Ankara.
  • 21. Thompson, C.J., Chase, G.G, Yarin, A.L., Reneker, D.H. (2007). Effects of parameters on nanofier diameter determined from electrospinning model. ScieneDirect, Polymer, 48, 6913-6922.
  • 22. Wu, C. M., Hsu, C. H., Su, C. I., Liu, C. L., Lee, j. Y. (2018). Optimizing parameters for continuous electrospinning of polyacrylonitrile nanofibrous yarn using the taguchi method. Journal of Industrial Textiles, 48(3), 559- 579.
  • 23. Sencadas, V., Ribeiro, C., Nunes-Pereira, J., Correia, V., Lanceros-Méndez, S. (2012). Fiber average size and distribution dependence on the electrospinning parameters of Poly (Vinylidene Fluoride–trifluoroethylene) membranes for biomedical applications. Applied Physics A, 109(3), 685-691.
  • 24. Macossay, J., Marruffo, A., Rincon, R., Eubanks, T., Kuang, A. (2007). Effect of needle diameter on nanofiber diameter and thermal properties of electrospun Poly (Methyl Methacrylate). Polymers for Advanced Technologies, 18(3), 180-183.
  • 25. Albetran, H., Dong, Y., Low, I.M. (2015). Characterization and optimization of electrospun Tio2/PVP nanofibers using taguchi design of experiment method. Journal of Asian Ceramic Societies, 3, 292–300.
  • 26. Cramariuc, B., Cramariuc, R., Scarlet, R., Rozemarie, L., Cramariuc, L. (2013). Fiber diameter in electrospinning process. Journal of Electrostatics, 71(3), 189–198.
  • 27. Park, J.Y., Lee, I.H., Bea, G.N. (2008). Optimization of the electrospinning conditions for preparation of nanofibers from polyvinylacetate (PVAc) in ethanol solvent. Journal of Industrial and Engineering Chemistry, 14(6), 707-713.
  • 28. Megelski, S., Stephens, J.S., Chase, D.B. and Rabolt, J.F. (2002). Micro and nanostructured surface morphology on electrospun polymer fibers. Macromolecules, 35, 8456-8466.
  • 29. Roso, M., Lorenzetti, A., Besco, S., Monti, M., Berti, G., Modesti, M. (2011). Application of empirical modelling in multi-layers membrane manufacturing. Computers and Chemical Engineering, 35, 2248-2256.
  • 30. Sorkhabi, T.S., Samberan, M.F., Ostrowski, K.A., Zajdel, P., Stempkowska, A., Gawenda, T. (2022). Electrospinning of Poly (Acrylamide), Poly (Acrylic Acid) and Poly (Vinyl Alcohol) nanofibers: characterization and optimization study on the effect of different parameters on mean diameter using Taguchi design of experiment method. Materials, 15, 5876.
  • 31. Mohammadi, M., Mohammadi, N., Mehdipour-Ataei, S. (2020). On the preparation of thin nanofibers of polysulfone polyelectrolyte for improving conductivity of proton-exchange membranes by electrospinning: Taguchi design, Response Surface methodology, and Genetic algorithm. International Journal of Hydrogen Energy, 45, 34110 – 34124.
  • 32. Svinterikos, E., Zuburtikudis, I. (2017). Tailor-Made electrospun nanofibers of bio waste Lignin/Recycled Poly(Ethylene Terephthalate). The Journal of Polymers and the Environment, 25, 465-478.
  • 33. Senthil, T., Anandhan, S. (2015). Electrospinning of non-woven P o l y ( S t y r e n e - C o - A c r y l o n i t r i l e ) nanofibrous webs for corrosive chemical filtration: process evaluation and optimization by Taguchi and Multiple Regression analyses. Journal of Electrostatics, 73, 43-55.
  • 34. Senthil, T., Anandhan, S. (2015). Fabrication of styrene–acrylonitrile random copolymer nanofiber membranes from N, N-dimethyl formamide by electrospinning. Journal of Elastomers and Plastics, 47(4), 327-346.
  • 35. Çavdar, F.Y. (2020). Elektrospinning cihazının işlem parametrelerinin optimizasyonu ve aradaki ilişkilerin deneysel modellenmesi (Doktora Tezi). Uludağ Üniversitesi, Bursa.
  • 36. Sarlak, N., Nejad, M.A.F., Shakhesi, S., Shabani, K. (2012). Effects of electrospinning parameters on titanium dioxide nanofibers diameter and morphology: an ınvestigation by box-wilson CCD. Chemical Engineering Journal, 1(210), 410-416.
  • 37. Chen, J.P., Ho, K.H., Chiang, Y.P., Wu, K.W. (2009). Fabrication of electrospun Poly(Methyl Methacrylate) nanofibrous membranes by statistical approach for application in enzyme immobilization. Journal of Membrane Science, 340 (1), 9-15.
  • 38. Khanlou, H.M., Ang, B.C., Talebian, S., Barzani, M.M., Silakhori, M., Fauzi, H. (2015). Multi-Response analysis in the processing of Poly (Methyl Methacrylate) nano-fibres membrane by electrospinning based on response surface methodology: fibre diameter and bead formation. Measurement, 65, 193-206.
  • 39. Fong, H, Chun, I and Reneker, DH. (1999). Beaded nanofibers formed during electrospinning. Polymer, 40, 4585–4592.
  • 40. Doustgani, A. (2016). Optimization of mechanical and structural properties of PVA nanofibers. Journal of Industrial Textiles, 46(3), 901–913.
  • 41. Kozanoğlu, G. (2006). Elektrospining yöntemiyle nanolif üretim teknolojisi (Yüksek Lisans Tezi). İstanbul Teknik Üniversitesi, İstanbul.
  • 42. Huang, M.Z., Zhang, Y.Z., Kotaki, M. and Ramakrishna, S. A. (2003). Review on polymer nanofibers by electrospinning and their applications ın nanocomposites. Composites Science And Technology, 63, 2223-2253.
  • 43. Li, D., Xia, Y. (2004). Electrospinning of nanofibers: reinventing the wheel? Advanced Materials, 16(14), 1151-1170.
  • 44. Beachley, V., Wen, X., (2009). Effect of electrospinning parameters on the diameter and length. Material Science and Engineering, 29(3), 663-668.
  • 45. Pham, Q.P., Sharma, U., Mıkos, A.G. (2006). Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng., 12(5), 1197-1211.
  • 46. Li, Z., Wang, C. (2013). Effects of working parameters on electrospinning, In: One-dimensional nanostructures. Berlin Heidelberg: Springer Briefs in Materials.
  • 47. Üstün, A. (2011). Hava filtrasyonu için nanolif üretimi (Yüksek Lisans Tezi). Pamukkale Üniversitesi, Denizli.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ef4a430b-2d14-4b96-8b7c-5311fa8ff151
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.