PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Tribological properties of MED610 medical material used in PolyJet matrix 3D printing technology

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Właściwości tribologiczne medycznego materiału MED610 stosowanego w technologii druku 3D PolyJet Matrix
Języki publikacji
EN
Abstrakty
EN
3D printing is increasingly being used in many industries and in medicine. As a result, new materials are being sought and researched, in particular biocompatible materials. Such materials can be used for medical devices, surgical instruments, and orthopaedic devices, as well as in bone surgery, tissue engineering, prosthetics, regenerative medicine, and the creation of drug delivery systems. This paper presents an analysis of the results of tribological testing of a biocompatible material used in 3D printing technology. The tests were conducted on a TRB3 tribometer (Anton) in a sphere-disk association. The tests were carried out by making cylindrical specimens with a diameter of 40 mm and a height of 6 mm from the MED610 material using photo-curing liquid polymer resin (PJM) technology. The specimens were fabricated in High Quality mode with a layer thickness of 0.016 mm and with different print directions in the X-Z plane: 0°, 45°, and 90°. The analysis was carried out under technical dry friction conditions and in the presence of saline solution (0.9% NaCl). The tests were performed under fixed test parameters, i.e. speed and loading of the specimens. Ball-disc tests were carried out using balls (counter-specimen) made of different materials with a diameter of 6 mm. Studies have shown that the direction of printing affects tribological wear, due to the anisotropic nature of the 3D printing technology. The lowest average coefficient of friction was obtained for specimens with a print direction of 90°.
PL
Druk 3D znajduje coraz szersze zastosowanie w wielu branżach przemysłowych oraz w medycynie. W związku z tym poszukiwane i poddawane badaniom są nowe materiały, w szczególności materiały biokompatybilne. Materiały takie mogą być stosowane do produkcji sprzętu medycznego, narzędzi chirurgicznych i urządzeń ortopedycznych oraz w chirurgii kostnej, inżynierii tkankowej, protetyce, medycynie regeneracyjnej lub do tworzenia systemów dostarczania leków. W pracy przedstawiono analizę wyników badań tribologicznych biokompatybilnego materiału polimerowego, stosowanego w technologii druku 3D. Testy tarciowe zrealizowano przy użyciu tribometru w skojarzeniu kula–tarcza. Badania przeprowadzono na próbkach w kształcie tarczy o średnicy 40 mm i wysokości 6 mm z materiału MED610 uzyskanego przy użyciu technologii fotoutwardzania ciekłych żywic polimerowych (PJM). Próbki wykonano w trybie wysokiej dokładności (High Quality) z grubością warstwy wynoszącą 0,016 mm oraz z różnymi kierunkami wydruku w płaszczyźnie X-Z: 0°, 45° i 90°. Analizę przeprowadzono w warunkach tarcia technicznie suchego oraz smarowania roztworem soli fizjologicznej (0,9% NaCl). Badania wykonano przy stałych parametrach testu, tj. prędkości i obciążenia próbek. Przeciwpróbkę stanowiły kulki o średnicy 6 mm z poliamidu 6.6 oraz polioksymetylenu (POM). Analiza wyników badań wskazały, iż kierunek druku ma wpływ na zużycie tribologiczne, co wynika z anizotropowej natury technologii druku 3D. Najmniejszy średni współczynnik tarcia uzyskano dla próbek o kierunku wydruku 90°.
Czasopismo
Rocznik
Tom
Strony
65--77
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
  • Kielce University of Technology, Faculty of Mechatronics and Mechanical Engineering, Tysiąclecia Państwa Polskiego 7 Ave., 25-314 Kielce, Poland.
  • Kielce University of Technology, Faculty of Mechatronics and Mechanical Engineering, Tysiąclecia Państwa Polskiego 7 Ave., 25-314 Kielce, Poland.
autor
  • Kielce University of Technology, Faculty of Mechatronics and Mechanical Engineering, Tysiąclecia Państwa Polskiego 7 Ave., 25-314 Kielce, Poland.
  • Kielce University of Technology, Faculty of Mechatronics and Mechanical Engineering, Tysiąclecia Państwa Polskiego 7 Ave., 25-314 Kielce, Poland.
Bibliografia
  • 1. Jandyal A., Chaturvedi I., Wazir I., Raina A., Ul Haq M.I.: 3D printing – A review of processes, materials and applications in industry 4.0. Sustainable Operations and Computers, 3, 2022, pp. 32–42, doi:10.1016/J.SUSOC.2021.09.004.
  • 2. Shahrubudin N., Lee T.C., Ramlan R.: An overview on 3D printing technology: Technological, materials, and applications. Procedia Manufacturing, 35, 2019, pp. 1286–1296, doi:10.1016/J.PROMFG.2019.06.089.
  • 3. Louvrier A., Marty P., Barrabé A., Euvrard E., Chatelain B., Weber E., Meyer C.: How useful is 3D printing in maxillofacial surgery?. Journal of stomatology, oral and maxillofacial surgery, 118, 2017, pp. 206–212, doi:10.1016/J.JORMAS.2017.07.002.
  • 4. Fahem M.M., Ali N.H., Duddu J.R., Luther H.: Cold-Injection Molded Gentamicin-Impregnated Polymethyl Methacrylate Implants for Cranioplasty. Operative neurosurgery (Hagerstown, Md.), 21, 2021, pp. 248–257, doi:10.1093/ONS/OPAB257.
  • 5. Fay C.D., Jeiranikhameneh A., Sayyar S., Talebian S., Nagle A., Cheng K., Fleming S., Mukherjee P., Wallace G.G.: Development of a customised 3D printer as a potential tool for direct printing of patient specific facial prosthesis. International Journal of Advanced Manufacturing Technology, 120, 2022, pp. 7143–7155, doi:10.1007/S00170-022-09194-0/TABLES/2.
  • 6. Szczygieł P.: Prototype of hand prosthesis components manufactured with biocompatible material using PolyJet Matrix technology. Mechanik, 95, 2022, pp. 50–54, doi:10.17814/MECHANIK.2022.7.10.
  • 7. Duan X., Wang B., Yang L., Kadakia A.R.: Applications of 3D Printing Technology in Orthopedic Treatment. BioMed Research International, 2021, 2021, pp. 1–3, doi:10.1155/2021/9892456.
  • 8. Mohapatra S., Kar R.K., Biswal P.K., Bindhani S.: Approaches of 3D printing in current drug delivery. Sensors International, 3, 2022, pp. 1–10, doi:10.1016/J.SINTL.2021.100146.
  • 9. Wszoła M., Nitarska D., Cywoniuk P., Gomółka M., Klak M.: Stem Cells as a Source of Pancreatic Cells for Production of 3D Bioprinted Bionic Pancreas in the Treatment of Type 1 Diabetes. Cells, 10, 2021, pp. 1–23, doi:10.3390/CELLS10061544.
  • 10. Szklanny A.A., Machour M., Redenski I., Chochola V., Goldfracht I., Kaplan B., Epshtein M., Simaan Yameen H., Merdler U., Feinberg A., et al.: 3D Bioprinting of Engineered Tissue Flaps with Hierarchical Vessel Networks (VesselNet) for Direct Host-To-Implant Perfusion. Advanced Materials, 33, 2021, pp. 1–19, doi:10.100/ADMA202102661.
  • 11. Park J.M., Jeon J., Koak J.Y., Kim S.K., Heo S.J.: Dimensional accuracy and surface characteristics of 3D-printed dental casts. The Journal of prosthetic dentistry, 126, 2021, pp. 427–437, doi:10.1016/J.PROSDENT.2020.07.008.
  • 12. Kitamori H., Sumida I., Tsujimoto T., Shimamoto H., Murakami S., Ohki M.: Evaluation of mouthpiece fixation devices for head and neck radiotherapy patients fabricated in PolyJet photopolymer by a 3D printer. Physica medica, 58, 2019, pp. 90–98, doi:10.1016/J.EJMP.2019.02.002.
  • 13. Mustahsan V.M., Anugu A., Komatsu D.E., Kao I., Pentyala S.: Biocompatible Customized 3D Bone Scaffolds Treated with CRFP, an Osteogenic Peptide. Bioengineering (Basel, Switzerland) 2021, 8, doi:10.3390/BIOENGINEERING8120199.
  • 14. Kozior T., Bochnia J., Gogolewski D., Zmarzły P., Rudnik M., Szot W., Szczygieł P., Musiałek M.: Analysis of Metrological Quality and Mechanical Properties of Models Manufactured with PhotoCuring PolyJet Matrix Technology for Medical Applications. Polymers, 14, 2022, pp. 1–18, doi:10.3390/POLYM14030408.
  • 15. Rudnik M., Hanon M.M., Szot W., Beck K., Gogolewski D., Zmarzły P., Kozior T.: Tribological Properties of Medical Material (MED610) Used in 3D Printing PJM Technology. Tehnicki Vjesnik, 29, 2022, pp. 1100–1108, doi:10.17559/TV-20220111154304.
  • 16. Bakowski H., Krzysiak Z.: Estimation of tribological properties of selected plastics materials manufactured by extrusion and 3d printing. Tribologia, 294, 2020, pp. 7–12, doi:10.5604/01.3001.0014.8330.
  • 17. Niemczewska-Wójcik M.: Concept For A Research Methodology Of Surface Topography – Testing And Analysis Of Tribological Wear Traces. Tribologia, 302, 2022, pp. 31–38, doi:10.5604/01.3001.0016.1607.
  • 18. Gogolewski D., Kozior T., Zmarzły P., Mathia T.G.: Morphology of models manufactured by slm technology and the ti6al4v titanium alloy designed for medical applications. Materials, 14, 2021, pp. 1–18, doi:10.3390/MA14216249.
  • 19. Ryniewicz W., Bojko Ł., Ryniewicz A.M., Pihut M., Pałka P.: Tribological studies of layered biomaterials for prosthetic structures based on substructures made of digital technologies. Tribologia, 287, 2019, pp. 87–99, doi:10.5604/01.3001.0013.6566.
  • 20. Piotrowska K., Madej M., Niemczewska-Wójcik M.: Properties of coatings used in biotribological systems. Engineering of Biomaterials, 2022, 2022, pp. 25–31, doi:10.34821/ENG.BIOMAT.164.2022.25-31.
  • 21. Piotrowska K., Madej M., Ozimina D.: Assessment of the Functional Properties of 316L Steel Alloy Subjected to Ion Implantation Used in Biotribological Systems. Materials, 14, 2021, pp. 1–21, doi:10.3390/MA14195525.
  • 22. Ozimina D., Piotrowska K., Madej M., Granek A.: The Influence of Ion Implantation on the Properties of Ti6Al4V Titanium Alloy in Biotribological Systems. Tribologia, 4, 2020, pp. 27–36, doi:10.5604/01.3001.0014.5895.
  • 23. Stratasys: Biocompatible Clear MED610, 2018, (Available online) www.stratasys.com/siteassets/materials/materials-catalog/biocompatible/mds_pj_med610_0720a.pdf
  • 24. EN ISO 10993-10:2013: Biological Evaluation of Medical Devices - Part 10: Tests for Irritation and Skin Sensitization, 2013.
  • 25. EN ISO 10993-5:2009: Biological Evaluation of Medical Devices — Part 5: Tests for in Vitro Cytotoxicity, 2009.
  • 26. EN ISO 10993-3:2014: Biological Evaluation of Medical Devices — Part 3: Tests for Genotoxicity, Carcinogenicity and Reproductive Toxicity, 2014.
  • 27. EN ISO 10993-18:2009: Biological Evaluation of Medical Devices - Part 18: Chemical Characterization of Materials, 2009.
  • 28. Stratasys: MSDS Clear Bio-Compatible MED610 Material Safety Data Sheet, 2011, (Available online) www.sys-uk.com/wp-content/uploads/2016/01/MSDS-Clear-Bio-Compatible-MED610-EnglishUS-1.pdf
  • 29. Stratasys: Support SUP705 Material Safety Data Sheet, 2021, (Available online) www.stratasys.co.in/siteassets/materials/materials-catalog/polyjet-materials/polyjet-support-materials/sds06136_26sep21_british-english_eghs_support_sup705.pdf
  • 30. Zmarzły P., Kozior T., Gogolewski D.: Dimensional and shape accuracy of foundry patterns fabricated through photo-curing. Tehnicki Vjesnik, 26, 2019, pp. 1576–1584, doi:10.17559/TV-20181109115954.
  • 31. GEWA. DELRIN (POM) Technical Data (obtained at the request of the authors in paper form).
  • 32. GEWA. NYLON 6.6 (PA) Technical Data (obtained at the request of the authors in paper form).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ef427a2c-9536-40bf-bff7-1863d37cf661
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.