PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of water vapor containing hydrogenous atmospheres on the micro-structure and tendency to brittle fracture of anode materials of YSZ–NiO(Ni) system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The purpose of this work is to estimate the tendency to brittle fracture of the YSZ–NiO(Ni) anode cermet in a hydrogenous environment with various concentrations of water vapor. Design/methodology/approach: YSZ–NiO ceramic plates were fabricated by sintering in an argon atmosphere. The treatment of material was performed in a hydrogenous environment with various concentrations of water vapor. The strength test was performed under three-point bending at 20°C in air. The microstructure and morphology of the fracture surface of the specimens were studied using a scanning electron microscope (SEM) Carl Zeiss EVO-40XVP. The chemical composition was determined using an INCA ENERGY 350 spectrometer. Microhardness measurements were performed on a NOVOTEST TC-MKB1 microhardness tester. The configuration of the imprints and cracks formed was studied on an optical microscope Neophot-21. The porosity of the materials was investigated by analysing the SEM micrographs using the image processing technique. Findings: Peculiarities of changes in the microstructure, the morphology of specimens fracture surface, physical and mechanical characteristics of YSZ–NiO(Ni) material for solid oxide fuel cell (SOFC) anodes of different preconditioning modes aged under various partial pressures of water vapor in a hydrogenous environment are found. Research limitations/implications: To study the actual behaviour of the YSZ–NiO(Ni) anode material in the operating environment, it is necessary to evaluate its strength, Young’s modulus, microhardness, and fracture toughness by changing with a certain step the partial pressure of water vapor in the whole range noted in this work.Practical implications: Based on the developed approach to assessing the propensity to brittle fracture of the formed cermet microstructure, it is possible to obtain an anode material that will provide the necessary functional properties of a SOFC. Originality/value: An approach to estimating the propensity to brittle fracture of a formed cermet structure is proposed based on the microhardness and fracture toughness characteristics obtained by the Vickers indentation method.
Słowa kluczowe
Rocznik
Strony
49--67
Opis fizyczny
Bibliogr. 75 poz.
Twórcy
autor
  • Lviv Polytechnic National University, 12 Bandera St., Lviv, 79013, Ukraine
autor
  • Karpenko Physico-Mechanical Institute of the National Academy of Sciences of Ukraine, 5 Naukova St., Lviv, 79060, Ukraine
  • Lviv Polytechnic National University, 12 Bandera St., Lviv, 79013, Ukraine
  • Lviv Polytechnic National University, 12 Bandera St., Lviv, 79013, Ukraine
  • Lviv Polytechnic National University, 12 Bandera St., Lviv, 79013, Ukraine
Bibliografia
  • [1] J. Milewski, J. Kupecki, A. Szczęśniak, N. Uzunow, Hydrogen production in solid oxide electrolyzers coupled with nuclear reactors, International Journal of Hydrogen Energy (2020) (in press). DOI: https://doi.org/10.1016/j.ijhydene.2020.11.217
  • [2] A. Szczęśniak, J. Milewski, Ł. Szabłowski, W. Bujalski, O. Dybiński, Dynamic model of a molten carbonate fuel cell 1 kW stack, Energy 200 (2020) 117442. DOI: https://doi.org/10.1016/j.energy.2020.117442
  • [3] W.Z. Zhu, S.C. Deevi, A review on the status of anode materials for solid oxide fuel cells, Materials Science and Engineering: A 362/1-2 (2003) 228-239. DOI: https://doi.org/10.1016/S0921-5093(03)00620-8
  • [4] G. Brus, H. Iwai, J.S. Szmyd, An anisotropic microstructure evolution in a solid oxide fuel cell anode, Nanoscale Research Letters 15 (2020) 3. DOI: https://doi.org/10.1186/s11671-019-3226-1
  • [5] A. Sciazko, T. Shimura, Y. Komatsu, N. Shikazono, Ni-GDC and Ni-YSZ electrodes operated in solid oxide electrolysis and fuel cell modes, Journal of Thermal Science and Technology 16/1 (2021) JTST0013. DOI: https://doi.org/10.1299/jtst.2021jtst0013
  • [6] L.A. Dobrzański, L.B. Dobrzański, A.D. Dobrzańska- Danikiewicz, Additive and hybrid technologies for products manufacturing using powders of metals, their alloys and ceramics, Archives of Materials Science and Engineering 102/2 (2020) 59-85. DOI: https://doi.org/10.5604/01.3001.0014.1525
  • [7] Z. Jiao, N. Shikazono, N. Kasagie, Study on degradation of solid oxide fuel cell with pure Ni anode, ECS Transactions 35/1 (2011) 1735-1742. DOI: https://doi.org/10.1149/1.3570161
  • [8] V.G. Efremenko, Yu.G. Chabak, A. Lekatou, A.E. Karantzalis, A.V. Efremenko, High-temperature oxidation and decarburization of 14.55 wt pct Cr-cast iron in dry air atmosphere, Metallurgical and Materials Transactions A 47A/2 (2016) 1529-1543. DOI: https://doi.org/10.1007/s11661-016-3336-7
  • [9] S. Primdahl, Nickel/yttria-stabilised zirconia cermet anodes for solid oxide fuel cells, PhD Thesis, University of Twente, Denmark, 1999.
  • [10] B.D. Vasyliv, A procedure for the investigation of mechanical and physical properties of ceramics under the conditions of biaxial bending of a disk specimen according to the ring–ring scheme, Materials Science 45/4 (2009) 571-575. DOI: https://doi.org/10.1007/s11003-010-9215-2
  • [11] A. Włodarczyk-Fligier, M. Polok-Rubiniec, J. Konieczny, Thermal analysis of matrix composite reinforced with Al2O3 particles, Journal of Achievements in Materials and Manufacturing Engineering 100/1 (2020) 5-11. DOI: https://doi.org/10.5604/01.3001.0014.1957
  • [12] S. Buchaniec, A. Sciazko, M. Mozdzierz, G. Brus, A novel approach to the optimization of a solid oxide fuel cell anode using evolutionary algorithms, IEEE Access 7 (2019) 34361-34372. DOI: https://doi.org/10.1109/ACCESS.2019.2904327
  • [13] A. Faes, A. Hessler-Wyser, A. Zryd, J. Van herle, A review of RedOx cycling of solid oxide fuel cells anode, Membranes 2/3 (2012) 585-664. DOI: https://doi.org/10.3390/membranes2030585
  • [14] I. Danilenko, G. Lasko, I. Brykhanova, V. Burkhovetski, L. Ahkhozov, The peculiarities of structure formation and properties of zirconia-based nanocomposites with addition of Al2O3 and NiO, Nanoscale Research Letters 12 (2017) 125. DOI: https://doi.org/10.1186/s11671-017-1901-7
  • [15] B.D. Vasyliv, Improvement of the electric conductivity of the material of anode in a fuel cell by the cyclic redox thermal treatment, Materials Science 46/2 (2010) 260- 264. DOI: https://doi.org/10.1007/s11003-010-9282-4
  • [16] V. Podhurska, B. Vasyliv, Influence of NiO reduction on microstructure and properties of porous Ni–ZrO2 substrates, Proceedings of the 2012 IEEE International Conference on Oxide Materials for Electronic Engineering (OMEE), Lviv, 2012, 293-294. DOI: https://doi.org/10.1109/OMEE.2012.6464761
  • [17] M. Radovic, E. Lara-Curzio, Mechanical properties of tape cast nickel-based anode materials for solid oxide fuel cells before and after reduction in hydrogen, Acta Materialia 52/20 (2004) 5747-5756. DOI: https://doi.org/10.1016/j.actamat.2004.08.023
  • [18] M. Pihlatie, A. Kaiser, M. Mogens Mogensen, Mechan-ical properties of NiO/Ni–YSZ composites depending on temperature, porosity and redox cycling, Journal of the European Ceramic Society 29/9 (2009) 1657-1664. DOI: https://doi.org/10.1016/j.jeurceramsoc.2008.10.017
  • [19] Y. Komatsu, A. Sciazko, N. Shikazono, Isostatic pressing of screen printed nickel-gadolinium doped ceria anodes on electrolyte-supported solid oxide fuel cells, Journal of Power Sources 485 (2021) 229317. DOI: https://doi.org/10.1016/j.jpowsour.2020.229317
  • [20] ASTM E 384-11. Standard test method for Knoop and Vickers hardness of materials, ASTM International, 2011. DOI: https://doi.org/10.1520/E0384-11
  • [21] ASTM С 1327-03. Standard test method for Vickers indentation hardness of advanced ceramics, ASTM International, 2003.
  • [22] V.G. Efremenko, Yu.G. Chabak, K. Shimizu, A.G. Lekatou, V.I. Zurnadzhy, A.E. Karantzalis, H. Halfa, V.A. Mazur, B.V. Efremenko, Structure refinement of high-Cr cast iron by plasma surface melting and post-heat treatment, Materials and Design 126 (2017) 278- 290. DOI: https://doi.org/10.1016/j.matdes.2017.04.022
  • [23] M. Kujawa, R. Suwak, L.A. Dobrzański, A. Gerle, B. Tomiczek, Thermal characterization of halloysite materials for porous ceramic preforms, Archives of Materials Science and Engineering 107/1 (2021) 5-15. DOI: https://doi.org/10.5604/01.3001.0014.8189
  • [24] B.R. Lawn, M.V. Swain, Microfracture beneath point indentations in brittle solids, Journal of Materials Science 10/1 (1975) 113-122. DOI: https://doi.org/10.1007/BF00541038
  • [25] B.R. Lawn, E.R. Fuller, Equilibrium penny-like cracks in indentation fracture, Journal of Materials Science 10/12 (1975) 2016-2024. DOI: https://doi.org/10.1007/BF00557479
  • [26] A.G. Evans, E.A. Charles, Fracture toughness determinations by indentation, Journal of the American Ceramic Society 59/7-8 (1976) 371-372. DOI: https://doi.org/10.1111/j.1151-2916.1976.tb10991.x
  • [27] K. Tanaka, Elastic/plastic indentation hardness and indentation fracture toughness: The inclusion core model, Journal of Materials Science 22/4 (1987) 1501- 1508. DOI: https://doi.org/10.1007/BF01233154
  • [28] K. Niihara, R. Morena, D.P.H. Hasselman, Evaluation of KIc of brittle solids by the indentation method with low crack-to-indent ratios, Journal of Materials Science Letters 1/1 (1982) 13-16. DOI: https://doi.org/10.1007/BF00724706
  • [29] K. Niihara, A fracture mechanics analysis of indentation-induced Palmqvist crack in ceramics, Journal of Materials Science Letters 2/5 (1983) 221- 223. DOI: https://doi.org/10.1007/BF00725625
  • [30] I. Danilenko, F. Glazunov, T. Konstantinova, I. Yashchyshyn, V. Burkhovetski, G. Volkova, Effect of Ni/NiO particles on structure and crack propagation in zirconia based composites, Advanced Materials Letters 5/8 (2014) 465-471. DOI: https://doi.org/10.5185/amlett.2014.amwc1040II
  • [31] O.N. Grigoriev, V.B. Vinokurov, T.V. Mosina, L.M. Melakh, N.D. Bega, A.V. Koroteev, L.I. Klimenko, A.V. Stepanenko, Kinetics of shrinkage, structurization, and the mechanical characteristics of zirconium boride sintered in the presence of activating additives, Powder Metallurgy and Metal Ceramics 55/11-12 (2017) 676- 688. DOI: https://doi.org/10.1007/s11106-017-9855-y
  • [32] G.A. Gogotsi, S.N. Dub, E.E. Lomonova, B.I. Ozersky, Vickers and Knoop indentation behaviour of cubic and partially stabilized zirconia crystals, Journal of the European Ceramic Society 15/5 (1995) 405-413. DOI: https://doi.org/10.1016/0955-2219(95)91431-M
  • [33] O.P. Ostash, V.V. Kulyk, T.M. Lenkovskiy, Z.A. Duria-gina, V.V. Vira, T.L. Tepla, Relationships between the fatigue crack growth resistance characteristics of a steel and the tread surface damage of railway wheel, Archives of Materials Science and Engineering 90/2 (2018) 49-55. DOI: https://doi.org/10.5604/01.3001.0012.0662
  • [34] M.A. Aswad, Comparison of the fracture toughness of high temperature ceramic measured by digital image correlation and indentation method, Journal of University of Babylon 22/4 (2014) 927-937.
  • [35] G.R. Anstis, P. Chantikul, B.R. Lawn, D.B. Marshall, A critical evaluation of indentation techniques for measuring fracture toughness: I, Direct crack measure-ment, Journal of the American Ceramic Society 64/9 (1981) 533-538. DOI: https://doi.org/10.1111/j.1151- 2916.1981.tb10320.x
  • [36] B.R. Lawn, A.G. Evans, D.B. Marshall, Elastic/plastic indentation damage in ceramics: The median/radial crack system, Journal of the American Ceramic Society 63/9-10 (1980) 574-581. DOI: https://doi.org/10.1111/j.1151-2916.1980.tb10768.x
  • [37] J.E. Blendell, The origins of internal stresses in polycrystalline alumina and their effects on mechanical properties, Cambridge, 1979.
  • [38] J. Lankford, Indentation microfracture in the Palmqvist crack regime: implications for fracture toughness evaluation by the indentation method, Journal of Materials Science Letters 1/11 (1982) 493-495. DOI: https://doi.org/10.1007/BF00721938
  • [39] B. Vasyliv, V. Kulyk, Z. Duriagina, D. Mierzwinski, T. Kovbasiuk, T. Tepla, Estimation of the effect of redox treatment on microstructure and tendency to brittle fracture of anode materials of YSZ–NiO(Ni) system, Eastern-European Journal of Enterprise Technologies 108/6(12) (2020) 67-77. DOI: https://doi.org/10.15587/1729-4061.2020.218291
  • [40] M. Spyrka, R. Atraszkiewicz, L. Klimek. A new ceramic composite based on spherical aluminium oxide for auxiliary panels in high-temperature firing processes, Archives of Materials Science and Engineering 101/1 (2020) 5-14. DOI: https://doi.org/10.5604/01.3001.0013.9501
  • [41] L.A. Dobrzański, L.B. Dobrzański, A.D. Dobrzańska- Danikiewicz, Manufacturing technologies thick-layer coatings on various substrates and manufacturing gradient materials using powders of metals, their alloys and ceramics, Journal of Achievements in Materials and Manufacturing Engineering 99/1 (2020) 14-41. DOI: https://doi.org/10.5604/01.3001.0014.1598
  • [42] D. Waldbillig, A. Wood, D.G. Ivey, Electrochemical and microstructural characterization of the redox tolerance of solid oxide fuel cell anodes, Journal of Power Sources 145/2 (2005) 206-215. DOI: https://doi.org/10.1016/j.jpowsour.2004.12.071
  • [43] B.D. Vasyliv, V.Ya. Podhurska, O.P. Ostash, V.V. Vira, Effect of a hydrogen sulfide-containing atmosphere on the physical and mechanical properties of solid oxide fuel cell materials, in: O. Fesenko, L. Yatsenko (eds.), Nanochemistry, Biotechnology, Nanomaterials, and Their Applications. NANO 2017. Springer Proceedings in Physics, Vol. 214, Springer, Cham, 2018, 475-485. DOI: https://doi.org/10.1007/978-3-319-92567-7_30
  • [44] L.Ya. Ropyak, M.V. Makoviichuk, I.P. Shatskyi, I.M. Pritula, L.O. Gryn, V.O. Belyakovskyi, Stressed state of laminated interference-absorption filter under local loading, Functional Materials 27/3 (2020) 638- 642. DOI: https://doi.org/10.15407/fm27.03.638
  • [45] V.M. Posuvailo, V.V. Kulyk, Z.A. Duriagina, I.V. Koval’chuck, M.M. Student, B.D. Vasyliv, The effect of electrolyte composition on the plasma electrolyte oxidation and phase composition of oxide ceramic coatings formed on 2024 aluminium alloy, Archives of Materials Science and Engineering 105/2 (2020) 49-55. DOI: https://doi.org/10.5604/01.3001.0014.5761
  • [46] T.S. Cherepova, H.P. Dmytrieva, O.I. Dukhota, M.V. Kindrachuk, Properties of nickel powder alloys hardened with titanium carbide, Materials Science 52/2 (2016) 173-179. DOI: https://doi.org/10.1007/s11003- 016-9940-2
  • [47] I.B. Ivasenko, V.M. Posuvailo, M.D. Klapkiv, V.A. Vynar, S.I. Ostap’yuk, Express method for determining the presence of defects of the surface of oxide-ceramic coatings, Materials Science 45/3 (2009) 460-464. DOI: https://doi.org/10.1007/s11003-009-9191-6
  • [48] T.B. Reed, Free energy of formation of binary compounds, MIT Press, Cambridge, 1971.
  • [49] Z. Peng, J. Gong, H. Miao, On the description of indentation size effect in hardness testing for ceramics: Analysis of the nanoindentation data, Journal of the European Ceramic Society 24/8 (2004) 2193-2201. DOI: https://doi.org/10.1016/S0955-2219(03)00641-1
  • [50] I.M. Spiridonova, E.V. Sukhovaya, S.B. Pilyaeva, O.G. Bezrukavaya, The use of composite coatings during metallurgical equipment parts repair, Metallurgiches-kaya i Gornorudnaya Promyshlennost 3 (2002) 58-61.
  • [51] L.Ya. Ropyak, I.P. Shatskyi, M.V. Makoviichuk, Influence of the oxide-layer thickness on the ceramic-aluminium coating resistance to indentation, Metallo-fizika i Noveishie Tekhnologii, 39/4 (2017) 517-524. DOI: https://doi.org/10.15407/mfint.39.04.0517
  • [52] J.W. Adams, R. Ruh, K.S. Mazdiyasni, Young’s modulus, flexural strength, and fracture of yttria-stabilized zirconia versus temperature, Journal of the American Ceramic Society 80/4 (1997) 903-908. DOI: https://doi.org/10.1111/j.1151-2916.1997.tb02920.x
  • [53] R.F. Cook, G.M. Pharr, Direct observation and analysis of indentation cracking in glasses and ceramics, Journal of the American Ceramic Society, 73/4 (1990) 787-817. DOI: https://doi.org/10.1111/j.1151- 2916.1990.tb05119.x
  • [54] A. Nastic, A. Merati, M. Bielawski, M. Bolduc, O. Fakolujo, M. Nganbe, Instrumented and Vickers indentation for the characterization of stiffness, hardness and toughness of zirconia toughened Al2O3 and SiC armor, Journal of Materials Science and Technology 31/8 (2015) 773-783. DOI: https://doi.org/10.1016/j.jmst.2015.06.005
  • [55] P. Kim, D. Brett, N. Brandon, The effect of water content on the electrochemical impedance response and microstructure of Ni-CGO anodes for solid oxide fuel cells, Journal of Power Sources 189/2 (2009) 1060-1065. DOI: https://doi.org/10.1016/j.jpowsour.2008.12.150
  • [56] B.R. Lawn, Fracture of brittle solids, Second Edition, Cambridge University Press, Cambridge, 1993. DOI: https://doi.org/10.1017/CBO9780511623127
  • [57] P. Khajavi, P.V. Hendriksen, J. Chevalier, L. Gremillard, H.L. Frandsen, Improving the fracture toughness of stabilized zirconia-based solid oxide cells fuel electrode supports: Effects of type and concentration of stabilizer(s), Journal of the European https://doi.org/10.1016/j.jeurceramsoc.2020.05.042
  • [58] H.A. Shabri, M.H.D. Othman, M.A. Mohamed, T.A. Kurniawan, S.M. Jamil, Recent progress in metal-ceramic anode of solid oxide fuel cell for direct hydrocarbon fuel utilization: A review, Fuel Processing Technology 212 (2021) 106626. DOI: https://doi.org/10.1016/j.fuproc.2020.106626
  • [59] T. Utigard, M. Wu, G. Plascencia, T. Marin, Reduction kinetics of Goro nickel oxide using hydrogen, Chemical Engineering Science 60/7 (2005) 2061-2068. DOI: https://doi.org/10.1016/j.ces.2004.11.024
  • [60] A. Faes, A. Nakajo, A. Hessler-Wyser, D. Dubois, A. Brisse, S. Modena, J. Van Herle, RedOx study of anode-supported solid oxide fuel cell, Journal of Power Sources 193/1 (2009) 55-64. DOI: https://doi.org/10.1016/j.jpowsour.2008.12.118
  • [61] J.G. Railsback, A.C. Johnston-Peck, J. Wang, J.B. Tracy, Size-dependent nanoscale Kirkendall efect during the oxidation of nickel nanoparticles, ACS Nano 4/4 (2010) 1913-1920. DOI: https://doi.org/10.1021/nn901736y
  • [62] Ye. Kharchenko, Z. Blikharskyy, V. Vira, B. Vasyliv, V. Podhurska, Study of nanostructural changes in a Ni-containing cermet material during reduction and oxidation at 600°C. Applied Nanoscience 10/12 (2020) 4535- 4543. DOI: https://doi.org/10.1007/s13204-020-01391-1
  • [63] X.W. Zhou, Y.F. Shen, H.M. Jin, Effect of deposition mechanism and microstructure of nano-ceria oxide addition on Ni-P coating by pulse electrodeposition, Advanced Materials Research 326 (2011) 151-156. DOI: https://doi.org/10.4028/www.scientific.net/AMR.326.151
  • [64] I.M. Andreiko, V.V. Kulyk, O.P. Ostash, Resistance of steels of railroad wheels to corrosion-fatigue fracture, Materials Science 47/5 (2012) 608-612. DOI: https://doi.org/10.1007/s11003-012-9434-9
  • [65] A. Wood, D. Waldbillig, Preconditioning treatment to enhance redox tolerance of solid oxide fuel cells, US Patent 8,029,946 B2, 2011.
  • [66] B. Vasyliv, J. Milewski, V. Podhurska, T. Wejrza-nowski, V. Kulyk, J. Skibiński, V. Vira, Ł. Szabłowski, A. Szczęśniak, O. Dybiński, Study of the degradation of a fine-grained YSZ–NiO anode material during reduction in hydrogen and reoxidation in air, Applied Nanoscience (2021) (published online). DOI: https://doi.org/10.1007/s13204-021-01768-w
  • [67] T. Sung Oh, R.M. Cannon, R.O. Ritchie, Subcritical crack growth along ceramic-metal interfaces, Journal of the American Ceramic Society 70/12 (1987) C-352- C-355. DOI: https://doi.org/10.1111/j.1151- 2916.1987.tb04917.x
  • [68] O.V. Sukhova, Influence of mechanisms of structure formation of interfaces in composites on their properties, Metallofizika i Noveishie Tekhnologii 31/7 (2009) 1001-1012.
  • [69] O.P. Ostash, V.H. Anofriev, I.M. Andreiko, L.A. Muradyan, V.V. Kulyk, On the concept of selection of steels for high-strength railroad wheels, Materials Science 48/6 (2013) 697-703. DOI: https://doi.org/10.1007/s11003-013-9557-7
  • [70] R.O. Ritchie, Mechanisms of fatigue-crack propagation in ductile and brittle solids, International Journal of Fracture 100/1 (1999) 55-83. DOI: https://doi.org/10.1023/A:1018655917051
  • [71] S.S. Savka, D.I. Popovych, A.S. Serednytski, Molecular dynamics simulations of the formation processes of zinc oxide nanoclusters in oxygen environment, in: O. Fesenko, L. Yatsenko (eds.), Nanophysics, Nanomaterials, Interface Studies, and Applications. NANO 2016. Springer Proceedings in Physics, Vol. 195, Springer, Cham, 2017, 145-156. DOI: https://doi.org/10.1007/978-3-319-56422-7_11
  • [72] L.A. Dobrzański, L.B. Dobrzański, A.D. Dobrzańska- Danikiewicz, Overview of conventional technologies using the powders of metals, their alloys and ceramics in Industry 4.0 stage, Journal of Achievements in Materials and Manufacturing Engineering 98/2 (2020) 56-85. DOI: https://doi.org/10.5604/01.3001.0014.1481
  • [73] K. Buła, A. Palatyńska-Ulatowska, L. Klimek, Biodentine management and setting time with Vicat and Vickers evaluation; a survey-based study on clinicians’ experience, Archives of Materials Science and Engineering 103/2 (2020) 75-85. DOI: https://doi.org/10.5604/01.3001.0014.3358
  • [74] B. Vasyliv, V. Podhurska, O. Ostash, Preconditioning of the YSZ–NiO fuel cell anode in hydrogenous atmospheres containing water vapor, Nanoscale Research Letters 12 (2017) 265. DOI: https://doi.org/10.1186/s11671-017-2038-4
  • [75] M. Szota, A. Łukaszewicz, K. Machnik, The possibility to control the thickness of the oxide layer on the titanium Grade 2 by mechanical activation and heat treatment, Journal of Achievements in Materials and Manufacturing Engineering 100/2 (2020) 70-77. DOI: https://doi.org/10.5604/01.3001.0014.3346
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ef41d21d-5f00-470c-8ecf-64bb04dd8f76
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.