Tytuł artykułu
Identyfikatory
Warianty tytułu
Mathematical modeling of supercritical cycles with carbon dioxide as a working fluid
Języki publikacji
Abstrakty
W artykule zaprezentowano modele matematyczne trzech podstawowych struktur obiegów nadkrytycznych z dwutlenkiem węgla jako czynnikiem roboczym. Dwutlenek węgla o parametrach nadkrytycznych jest płynnym stanem dwutlenku węgla, który utrzymywany jest powyżej jego punktu krytycznego (to jest krytycznego ciśnienia i temperatury). Gęstość w tym punkcie jest podobna do gęstości cieczy i pozwala znacznie zmniejszyć moc pompowania, zwiększając sprawność konwersji energii cieplnej na elektryczną. Zaletami tego czynnika roboczego są właściwości fizyczne, które pozwalają na niższe ciśnienia robocze oraz to, że jego właściwości termodynamiczne są dobrze znane. Dwutlenek węgla jest nietoksyczny i jest stosunkowo tani. Ponadto wymagany jest mniejszy rozmiar maszyn i urządzeń w porównaniu z układem parowym, co zmniejsza koszty inwestycyjne. Artykuł prezentuje porównanie osiągów trzech podstawowych układów z nadkrytycznym dwutlenkiem węgla będących rezultatem własnych obliczeń w komercyjnie dostępnym oprogramowaniu.
The article presents mathematical models of three basic structures of supercritical cycles with carbon dioxide as a working fluid. Supercritical CO2 is a fluid state of carbon dioxide where it is held above its critical point (i.e., critical pressure and temperature). The density at that point is similar to that of a liquid and allows for the pumping power needed in a compressor to be significantly reduced, thus significantly increasing the thermal-to-electric energy conversion efficiency. Advantages of this working fluid is that physical properties allows lower operating pressures and its thermodynamic properties are well known. Carbon dioxide is non-toxic and has relatively low cost. Also, smaller size of equipment relative to steam system reduce capital cost. The paper presents a comparison of the performance of three basic cycles with supercritical carbon dioxide as a working fluid. Results are based on own authors calculations in commercially available software.
Wydawca
Czasopismo
Rocznik
Tom
Strony
47--51
Opis fizyczny
Bibliogr. 33 poz. rys., tab.
Twórcy
autor
- Instytut Techniki Cieplnej Politechniki Warszawskiej
autor
- Instytut Techniki Cieplnej Politechniki Warszawskiej
autor
- Instytut Techniki Cieplnej Politechniki Warszawskiej
Bibliografia
- [1] Feher E., The Supercritical Thermodynamic Power Cycle, Energy Conversion 1968, pp. 85-90.
- [2] Dostal V., Driscoll M.J., Hejzar P., A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors, Advanced Nuclear Power Technology Program, 2004.
- [3] Angelino G., Carbon Dioxide Condensation Cycles for Power Production, ASME Paper No. 68-GT-23, 1968.
- [4] Kulhánek M., Dostál V., Thermodynamic Analysis and Comparison of Supercritical Carbon Dioxide Cycles, Supercritical CO2 Power Cycle Symposium, pp. 1 - 7, 2011
- [5] Strona internetowa: www.ebsilon.com
- [6] Wołowicz M., Milewski J., Futyma K., Szczęśniak A., The construction of the mathematical model of supercritical CO2 cycles using EBSILON software, AIP Conference Proceedings 2116, 450085, 2019.
- [7] McClung A., Brun K., Chordia L., Technical and economic evaluation of supercritical oxy-combustion for power generation, The 4th International Symposium - Supercritical CO2 Power Cycles, 2014.
- [8] Moisseytsev A., Sienicki J., Investigation of alternative layouts for the supercritical carbon dioxide Brayton cycle for a sodium-cooled fast reactor, Nuclear Engineering and Design 2009, pp. 1362 - 1371.
- [9] Akbari A., Mahmoudi S., Thermoeconomic analysis and optimization of the combined supercritical CO2 (carbon dioxide) recompression Brayton/organic Rankine cycle, Energy 2014, pp. 501 - 512.
- [10] Iverson B., Conboy T., Pasch J., Kruizenga A., Supercritical CO2 Brayton cycles for solar-thermal energy, Applied Energy 2013, pp. 957 - 970.
- [11] Halimi B., Suh K., Computational analysis of supercritical CO2 Brayton cycle power conversion system for fusion reactor, Energy Conversion and Management 2012, pp. 38 - 43.
- [12] Sánchez D., Chacartegui R., Jiménez-Espadafor F., Sánchez T., A New Concept for High Temperature Fuel Cell Hybrid Systems Using Supercritical Carbon Dioxide, Journal of Fuel Cell Science and Technology 2009, pp. 1 - 11.
- [13] Harvego E., McKellar M., Optimization and comparison of direct and indirect supercritical carbon dioxide power plant cycles for nuclear applications, International Mechanical Engineering Congress and Exposition, 2011.
- [14] Pérez-Pichel G., Linares J., Herranz L., Moratilla B., Thermal analysis of supercritical CO2 power cycles: Assessment of their suitability to the forthcoming sodium fast reactors, Nuclear Engineering and Design 2012, pp. 23 - 34.
- [15] Yamaguchi H., Zhang X., Fujima K., Enomoto M., Sawada N., Solar energy powered Rankine cycle using supercritical CO2, Applied Thermal Engineering 2006, pp. 2345 - 2354.
- [16] Ho Joon Yoon, Yoonhan Ahn, Jeong Ik Lee, Yacine Addad, Potential advantages of coupling supercritical CO2 Brayton cycle to water cooled small and medium size reactor, Nuclear Engineering and Design 2012, pp. 223 - 232.
- [17] Jia Liu, Haisheng Chen, Yujie Xu, Liang Wang, Chunqing Tan, A solar energy storage and power generation system based on supercritical carbon dioxide, Renewable Energy 2014, pp. 43 - 51.
- [18] Jiangfeng Wang, Zhixin Sun, Yiping Dai, Shaolin Ma, Parametric optimization design for supercritical CO2 power cycle using genetic algorithm and artificial neural network, Applied Energy 2010, pp. 1317 - 1324.
- [19] Bryant J., Saari H., Zanganeh K., An Analysis and Comparison of the Simple and Recompression Supercritical CO2 Cycles, Supercritical CO2 Power Cycle Symposium 2011, pp. 1 - 8.
- [20] José M. Muñoz de Escalona, The potential of the supercritical carbon dioxide cycle in high temperature fuel cell hybrid systems, Supercritical CO2 Power Cycle Symposium, 2011.
- [21] Moroz L., Burlaka M., Rudenko O., Study of a Supercritical CO2 Power Cycle Application in a Cogeneration Power Plant, Supercritical CO2 Power Cycle Symposium, 2014.
- [22] Driscoll M.., Supercritical CO2 Plant Cost Assessment, 2004.
- [23] Vidhi R., Yogi Goswami D., Chen H., Stefanakos E., Kuravi S., Sabau A., Study of supercritical carbon dioxide power cycle for low grade heat conversion, 2011.
- [24] Vasquez Padilla R., Yen Chean Soo Too, Benito R., Stein W., Exergetic analysis of supercritical CO2 Brayton cycles integrated with solar central receivers, 2015, Applied Energy , pp. 348 - 365.
- [25] Seong Jun Bae, Yoonhan Ahn, Jekyoung Lee, Jeong Ik Lee, Various supercritical carbon dioxide cycle layouts study for molten carbonate fuel cell application, Journal of Power Sources 2014, pp. 608 - 618.
- [26] Cheang V.T., Hedderwick R.A., McGregor C., Benchmarking supercritical carbon dioxide cycles against steam Rankine cycles for Concentrated Solar Power, Solar Energy 2015, pp. 199 - 211.
- [27] Zhang X.R., Yamaguchi H., Uneno D., Fujima K., Enomoto M., Sawada N., Analysis of a novel solar energy-powered Rankine cycle for combined power and heat generation using supercritical carbon dioxide, Renewable Energy 2006, pp. 1839 - 1854.
- [28] Zhang X.R., Yamaguchi H., Uneno D., Experimental study on the performance of solar Rankine system using supercritical CO2, Renewable Energy 2007, pp. 2617 - 2628.
- [29] Chen Y., Lundqvist P., Johansson A., Platell P., A comparative study of the carbon dioxide transcritical power cycle compared with an organic rankine cycle with R123 as working fluid in waste heat recovery, Applied Thermal Engineering 2006, pp. 2142 - 2147.
- [30] Chen Y., Lundqvist P., Platell P., Theoretical research of carbon dioxide power cycle application in automobile industry to reduce vehicle’s fuel consumption, Applied Thermal Engineering 2005, pp. 2041 - 2053.
- [31] Le Moullec Y., Conception of a pulverized coal fired power plant with carbon capture around a supercritical carbon dioxide brayton cycle, Energy Procedia 2013, pp. 1180-1186.
- [32] Kim Y.M., Kim C.G., Favrat D., Transcritical or supercritical CO2 cycles using both low- and high-temperature heat sources, Energy 2012, pp. 402 - 415.
- [33] Le Moullec Y., Conceptual study of a high efficiency coal-fired power plant with CO2 capture using a supercritical CO2 Brayton cycle, Energy 2013, pp. 32 - 46.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ef406dae-d4df-4d48-9149-5983b32568b4