PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Katalizowane cynkiem asymetryczne hydrosililowanie ketonów i imin

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Zinc-catalyzed asymmetric hydrosilylation of ketones and imines
Języki publikacji
PL
Abstrakty
EN
One of the fundamental research goals in modern chemistry is the development of efficient and selective procedures to access organic compounds. Among all of the methodologies developed so far, catalysis offers an efficient and economical approach to enantiomericaly pure substances. In particular, transition metal catalysts modified by ligands, usually phosphines, are one of most successful examples of practical catalysis. Unfortunately, most of the applied metals (e.g., Pd, Rh, Ru, Ir) are low abundant, toxic and expensive. For this reason, recent research is focusing on their replacement by cheaper and low toxic metals. For example, the use of zinc can be of great interest, due to its abundance (0.0076% in the earth crust), biological relevance and distinct abilities. In the last two decades many scientific group have been working on finding new, high efficient and inexpensive catalytic system based on zinc for enantioselective transformations. It has been found that many of important organic reactions (for example aldol, Diels-Alder, Friedel-Crafts, Henry reactions) in their asymmetric version can be catalyzed by zinc complexes. One of them is also asymmetric reduction of double carbon-heteroatom bonds through addition of hydride (from silane). Hydrosilylation reduction is a promising alternative for the catalytic transformation of organic molecules to other reduction methods such as: hydrogenation and transfer hydrogenation owing to its operational simplicity and mild conditions. This review will give a general overview of the possible applications of zinc-catalyzed hydrosilylation of carbonyl compounds and imines. Since the understanding of mechanism of reaction is crucial for rational planning of new and more efficient ligands, some part of this article was devoted for mechanical considerations.
Rocznik
Strony
521--562
Opis fizyczny
Bibliogr. 78 poz., rys., schem.
Twórcy
autor
  • Zakład Stereochemii Organicznej, Wydział Chemii, Uniwersytet im. A. Mickiewicza ul. Grunwaldzka 6, 60-780 Poznań
Bibliografia
  • [1] B. List, Asymmetric Organocatalysis, Springer, 2010.
  • [2] P.I. Dalko, Enantioselective Organocatalysis: Reactions and Experimental Procedures, Wiley-VCH, Weinheim 2007.
  • [3] A. Berkessel, H. Groger, Asymmetric Organocatalysis: From Biomimetic Concepts to Applications in Asymmetric Synthesis, Wiley-VCH, Weinheim 2005.
  • [4] H. Nishiyama, K. Itoh, Catalytic Asymmetric Synthesis, Wiley-VCH, Weinheim 2000.
  • [5] H. Nishiyama, Comprehensive Asymmetric Catalysis, Springer, Berlin 1999.
  • [6] H. Nishiyama, Transition Metals for Organic Synthesis. Building Blocks and Fine Chemicals, Wiley--VCH, Weinheim 2004.
  • [7] M. Cieślak-Golonka, J. Starosta, M. Wasilewski, Wstęp do chemii koordynacyjnej, Wydawnictwo Naukowe PWN, Warszawa 2010.
  • [8] X.-F. Wu, H. Neumann, Adv. Synth. Catal., 2012, 354, 3141.
  • [9] G. Helmchen, R.W. Hoffmann, J. Mulzer, E. Schanmann, Stereoselective Synthesis, Georg Thieme Verlag, Stuttgard-New York 1996.
  • [10] T. Ohkuma, M. Kitamura, R. Noyori, Catalytic Asymmetric Synthesis, Wiley-VCH, Weinheim 2000.
  • [11] B. Marciniec, Hydrosililation, Springer, Berlin 2009.
  • [12] N.J. Lawrence, M.D. Drew, S.M. Bushell, J. Chem. Soc. Perkin Trans. 1, 1999, 3381.
  • [13] J. Gawroński, N. Waścinska, J. Gajewy, Chem. Rev., 2008, 108, 5227.
  • [14] B. Marciniec, Coord. Chem. Rev., 2005, 249, 2374.
  • [15] B. Marciniec , Acc. Chem. Res., 2007, 40, 943.
  • [16] J. Yun, S.L. Buchwald, J. Am. Chem. Soc., 1999, 121, 5640.
  • [17] N.S. Shaikh, S. Enthaler, K. Junge, M. Beller, Angew. Chem. Int. Ed., 2008, 47, 2497.
  • [18] C. Song, C. Ma, Y. Ma, W. Feng, S. Ma, Q. Chaia, M.B. Andrus, Tetrahedron Lett., 2005, 46, 3241.
  • [19] Y. Nishibayashi, K. Segawa, K. Ohe, S. Uemura, Organometallics, 1995, 14, 5486.
  • [20] Y. Nishibayashi, K. Segawa, H. Takada, K. Ohe, S. Uemura, Chem. Commun., 1996, 847.
  • [21] B. Tao, G.C. Fu, Angew. Chem. Int. Ed., 2002, 41, 3892.
  • [22] D.A. Evans, F.E. Michael, J.S. Tedrow, K.R. Campos, J. Am. Chem. Soc., 2003, 125, 3534.
  • [23] L.-J. Liu, F. Wang, M. Shi, Organometallics, 2009, 28, 4416.
  • [24] B.H. Lipshutz, K. Noson, W. Chrisman, J. Am. Chem. Soc., 2001, 123, 12917.
  • [25] B.H. Lipshutz, K. Noson, W. Chrisman, A. Lower, J. Am. Chem. Soc., 2003, 125, 8779.
  • [26] N. Mostefai, S. Sirol, J. Courmarcel, O. Riant, Synthesis, 2007, 1265.
  • [27] B.H. Lipshutz, A. Lower, K. Noson, Org. Lett., 2002, 4, 4045.
  • [28] B.H. Lipshutz, A. Lower, R.J. Kucejko, K. Noson, Org. Lett., 2006, 8, 2969.
  • [29] C.-T. Lee, B.H. Lipshutz, Org. Lett., 2008, 10, 4187.
  • [30] C.A. Willoughby, S.L. Buchwald, J. Am. Chem. Soc., 1994, 116, 11703.
  • [31] X. Verdaguer, U.E.W. Lange, M.T. Reding, S.L. Buchwald, J. Am. Chem. Soc., 1996, 118, 6784.
  • [32] X. Verdaguer, U.E.W. Lange, S.L. Buchwald, Angew. Chem. Int. Ed., 1998, 37, 1103.
  • [33] M.C. Hansen, S.L. Buchwald, Org. Lett., 2000, 2, 713.
  • [34] K.A. Nolin, R.W. Ahn, F.D. Toste, J. Am. Chem. Soc., 2005, 127, 12462.
  • [35] B.H. Lipshutz, H. Shimizu, Angew. Chem. Int. Ed., 2004, 43, 2228.
  • [36] B.H. Lipshutz, B.A. Frieman, A.E. Tomaso, Jr, Angew. Chem. Int. Ed., 2006, 45, 1259.
  • [37] H. Mimoun, J. Org. Chem., 1999, 64, 2582.
  • [38] H. Mimoun, J.Y. de Saint Laumer, L. Giannini, R. Scopelliti, C. Floriani, J. Am. Chem. Soc., 1999, 121, 6158.
  • [39] X.-F. Wu, Chem. Asian J., 2012, 7, 2502.
  • [40] V. Bette, A. Mortreux, F. Ferioli, G. Martelli, D. Savoia, J.-F. Carpentier, Eur. J. Org. Chem. 2004, 3040.
  • [41] V. Bette, A. Mortreux, D. Savoia, J.-F. Carpentier, Tetrahedron, 2004, 60, 2837.
  • [42] V.M. Mastranzo, L. Quintero, C.A. de Parrodi, E. Juaristi, P.J. Walsh, Tetrahedron, 2004, 60, 1781.
  • [43] J. Gajewy, M. Kwit, J. Gawroński, Adv. Synth. Catal., 2009, 351, 1055.
  • [44] J. Gajewy, J. Gawroński, M. Kwit, Monatsh. Chem., 2012, 143, 1045.
  • [45] J. Gajewy, J. Gawroński, M. Kwit, Eur. J. Org. Chem., 2013, 307.
  • [46] N.E. Borisova, M.D. Reshetova, Y.A. Ustynyuk, Chem. Rev., 2007, 107, 46.
  • [47] D. Savoia, A. Gualandi, Curr. Org. Synth., 2009, 6, 102.
  • [48] D. Savoia, A. Gualandi, Curr. Org. Synth., 2009, 6, 119.
  • [49] J. Gawroński, H. Kołbon, M. Kwit, A. Katrusiak, J. Org. Chem., 2000, 65, 5768.
  • [50] J. Gawroński, M. Kwit, J. Grajewski, J. Gajewy, A. Długokińska, Tetrahedron: Asymmetry, 2007, 18, 2632.
  • [51] A. Gualandi, S. Grilli, D. Savoia, M. Kwit, J. Gawroński, Org. Biomol. Chem., 2011, 9, 4234.
  • [52] K. Tanaka, S. Hachiken, Tetrahedron Letters, 2008, 49, 2533.
  • [53] K. Tanaka, N. Fukuda, T. Fujiwara, Tetrahedron: Asymmetry, 2007, 18, 2657.
  • [54] J. Gawroński, K. Gawrońska, J. Grajewski, M. Kwit, A. Plutecka, U. Rychlewska, Chem. Eur. J., 2006, 12, 1807.
  • [55] J. Gawroński, K. Gawrońska, K. Kacprzak, M. Kwit, Wspołczesna synteza organiczna. Wybor eksperymentow, Wydawnictwo Naukowe PWN, Warszawa 2004.
  • [56] T. Inagaki, Y. Yamada, L.T. Phong, A. Furuta, J. Ito, H. Nishiyama, Synlett, 2009, 2, 253.
  • [57] M. Bandini, M. Melucci, F. Piccinelli, R. Sinisi, S. Tommasi, A. Umani-Ronchi, Chem. Commun., 2007, 4519.
  • [58] E. Santacruz, G. Huelgas, S.K. Angulo, V.M. Mastranzo, S. Hernandez-Ortega, J.A. Avińa, E. Juaristi, C. Anaya de Parrodi, P.J. Walsh, Tetrahedron: Asymmetry, 2009, 20, 2788.
  • [59] S. Gerard, Y. Pressel, O. Riant, Tetrahedron: Asymmetry, 2005, 16, 1889.
  • [60] T. Zaman, R. Frauenlob, R. McCarthy, C.M. Walsh, E. Bergin, J. Organometal. Chem., 2012, 716, 159.
  • [61] K. Junge, K. Mcller, B. Wendt, S. Das, D. Gcrdes, K. Thurow, M. Beller, Chem. Asian J., 2012, 7, 314.
  • [62] S. Liu, J. Peng, H. Yang, Y. Bai, J. Li, G. Lai, Tetrahedron, 2012, 68, 1371.
  • [63] V. Bette, A. Mortreux, C. Lehmann, J.-F. Carpentier, Chem. Commun., 2003, 332.
  • [64] V. Bette, A. Mortreux, D. Savoia, J.-F. Carpentier, Adv. Synth. Catal., 2005, 347, 289.
  • [65] H. Ushio, K. Mikami, Tetrahedron Letters, 2005, 46, 2903.
  • [66] K. Mikami, S. Matsukawa, Nature, 1997, 385, 613.
  • [67] T. Ohkuma, H. Doucet, T. Pham, K. Mikami, T. Korenaga, M. Terada, R. Noyori, J. Am. Chem. Soc., 1998, 120, 1086.
  • [68] S. Matsukawa, K. Mikami, Tetrahedron: Asymmetry, 1997, 8, 815.
  • [69] K. Ding, A. Ishii, K. Mikami, Angew. Chem. Int. Ed. Engl., 1999, 38, 497.
  • [70] K. Mikami, M. Terada, Comprehensive Asymmetric Catalysis, Springer, Berlin, 1999.
  • [71] L. Pu, H.-B. Yu, Chem. Rev., 2001, 101, 757.
  • [72] K. Mikami, R. Angelaud, K.L. Ding, A. Ishii, A. Tanaka, N. Sawada, K. Kudo, M. Senda, Chem. Eur. J., 2001, 7, 730.
  • [73] A.M. Costa, C. Jimeno, J. Gavenonis, P.J. Carroll, P.J. Walsh, J. Am. Chem. Soc., 2002, 124, 6929.
  • [74] T. Ireland, F. Fontanet, G.-G. Tchao, Tetrahedron Letters, 2004, 45, 4383.
  • [75] B.-M. Park, S. Mun, J. Yun, Adv. Synth. Catal., 2006, 348, 1029.
  • [76] T. Yamada, T. Nagata, K.D. Sugi, K. Yorozu, T. Ikeno, Y. Ohtsuka, D. Miyazaki, T. Mukaiyama, Chem. Eur. J., 2003, 9, 4485.
  • [77] J. Gajewy, J. Gawroński, M. Kwit, Org. Biomol. Chem., 2011, 9, 3863.
  • [78] Y.M.A. Yamada, N. Yoshikawa, H. Sasai, M. Shibasaki, Angew. Chem. Int. Ed. Engl., 1997, 36, 1871.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ef33ad78-286c-4a44-9055-33cc186301f7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.